Patents by Inventor Devesh Kumar Agrawal

Devesh Kumar Agrawal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10907089
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 2, 2021
    Assignee: Baker Hughes Holdings LLC
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Patent number: 10882741
    Abstract: A method of determining a concentration of hydrogen sulfide in a fluid comprises exposing a sensor to the fluid, the sensor comprising a pair of electrodes defining a gap therebetween and a sensing material bridging the gap between the electrodes, measuring a value of an electrical parameter of the sensor at an applied frequency of greater than about 10 kHz and a voltage of less than about 1.0 volt when the sensor is exposed to the fluid, and determining the concentration of hydrogen sulfide in the fluid based at least in part on the measured value of the electrical parameter. Related apparatuses and methods are also disclosed.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: January 5, 2021
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Othon Do Rego Monteiro, Devesh Kumar Agrawal, Sankaran Murugesan
  • Patent number: 10570035
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: February 25, 2020
    Assignee: Baker Hughes, a GE company, LLC
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20190092634
    Abstract: A method of determining a concentration of hydrogen sulfide in a fluid comprises exposing a sensor to the fluid, the sensor comprising a pair of electrodes defining a gap therebetween and a sensing material bridging the gap between the electrodes, measuring a value of an electrical parameter of the sensor at an applied frequency of greater than about 10 kHz and a voltage of less than about 1.0 volt when the sensor is exposed to the fluid, and determining the concentration of hydrogen sulfide in the fluid based at least in part on the measured value of the electrical parameter. Related apparatuses and methods are also disclosed.
    Type: Application
    Filed: October 15, 2018
    Publication date: March 28, 2019
    Inventors: Othon Do Rego Monteiro, Devesh Kumar Agrawal, Sankaran Murugesan
  • Publication number: 20190048251
    Abstract: A suspension for removing hydrocarbons from a subterranean formation includes a fluid comprising at least one of water, brine, steam, carbon dioxide, a light hydrocarbon, and an organic solvent; and a plurality of nanoparticles dispersed with the fluid. Nanoparticles of the plurality comprise silica and carbon. A method includes forming a plurality of nanoparticles and dispersing the plurality of nanoparticles with a fluid to form a suspension comprising the nanoparticles. A method of recovering a hydrocarbon material includes introducing a suspension into a subterranean formation containing hydrocarbons, forming a stabilized emulsion of the suspension and the hydrocarbons within the subterranean formation; and removing the emulsion from the subterranean formation. The suspension comprises a plurality of nanoparticles, and at least some nanoparticles of the plurality comprise silica and carbon.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 14, 2019
    Inventors: Devesh Kumar Agrawal, Sankaran Murugesan, Valery N. Khabashesku
  • Patent number: 10155899
    Abstract: A suspension for removing hydrocarbons from a subterranean formation includes a fluid comprising at least one of water, brine, steam, carbon dioxide, a light hydrocarbon, and an organic solvent; and a plurality of nanoparticles dispersed with the fluid. Nanoparticles of the plurality comprise silica and carbon. A method includes forming a plurality of nanoparticles and dispersing the plurality of nanoparticles with a fluid to form a suspension comprising the nanoparticles. A method of recovering a hydrocarbon material includes introducing a suspension into a subterranean formation containing hydrocarbons, forming a stabilized emulsion of the suspension and the hydrocarbons within the subterranean formation; and removing the emulsion from the subterranean formation. The suspension comprises a plurality of nanoparticles, and at least some nanoparticles of the plurality comprise silica and carbon.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: December 18, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Devesh Kumar Agrawal, Sankaran Murugesan, Valery N. Khabashesku
  • Patent number: 10120097
    Abstract: A method of determining a concentration of hydrogen sulfide in a fluid comprises exposing a sensor to the fluid, the sensor comprising a pair of electrodes defining a gap therebetween and a sensing material bridging the gap between the electrodes, measuring a value of an electrical parameter of the sensor at an applied frequency of greater than about 10 kHz and a voltage of less than about 1.0 volt when the sensor is exposed to the fluid, and determining the concentration of hydrogen sulfide in the fluid based at least in part on the measured value of the electrical parameter. Related apparatuses and methods are also disclosed.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: November 6, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Othon Do Rego Monteiro, Devesh Kumar Agrawal, Sankaran Murugesan
  • Publication number: 20180179437
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Application
    Filed: February 26, 2018
    Publication date: June 28, 2018
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Publication number: 20180118587
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 9902896
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: February 27, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Patent number: 9873827
    Abstract: Suspensions comprising polyhedral oligomeric silsesquioxane nanoparticles and at least one carrier fluid. The polyhedral oligomeric silsesquioxane may include functional groups and the suspension may further comprise carbon-based nanoparticles and silica nanoparticles. Related methods of recovering hydrocarbons from a subterranean formation using the suspension. The method comprises contacting hydrocarbons with the suspension to form an emulsion stabilized by the polyhedral oligomeric silsesquioxane nanoparticles.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: January 23, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Soma Chakraborty, Gaurav Agrawal, Devesh Kumar Agrawal, Valery N. Khabashesku
  • Patent number: 9856158
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Grant
    Filed: January 20, 2016
    Date of Patent: January 2, 2018
    Assignee: Baker Hughes Incorporated
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Patent number: 9840669
    Abstract: A flocculant, according to embodiments of the present disclosure, includes a core nanoparticle and at least one positively charged functional group on a surface of the core nanoparticle. The nanoparticle may comprise a silica, alumina, titania, iron oxide, iron nitride, iron carbide, or a carbon-based nanoparticle. The flocculant may be used, in a method of bitumen recovery, to neutralize and agglomerate bitumen droplets and/or mineral particles derived from oil sands ore. The bitumen droplets agglomerate about the core nanoparticle of the flocculant to form bitumen flocs, while the mineral particles agglomerate about the core nanoparticle of the flocculant to form mineral flocs. The buoyant bitumen flocs may then separate from the dense mineral flocs to enable high-yield recovery of bitumen from oil sands.
    Type: Grant
    Filed: June 5, 2014
    Date of Patent: December 12, 2017
    Assignee: Baker Hughes Incorporated
    Inventors: Oleksandr V. Kuznetsov, Valery N. Khabashesku, Oleg A. Mazyar, Devesh Kumar Agrawal
  • Publication number: 20170285211
    Abstract: A method of determining a concentration of hydrogen sulfide in a fluid comprises exposing a sensor to the fluid, the sensor comprising a pair of electrodes defining a gap therebetween and a sensing material bridging the gap between the electrodes, measuring a value of an electrical parameter of the sensor at an applied frequency of greater than about 10 kHz and a voltage of less than about 1.0 volt when the sensor is exposed to the fluid, and determining the concentration of hydrogen sulfide in the fluid based at least in part on the measured value of the electrical parameter. Related apparatuses and methods are also disclosed.
    Type: Application
    Filed: April 5, 2016
    Publication date: October 5, 2017
    Inventors: Othon Do Rego Monteiro, Devesh Kumar Agrawal, Sankaran Murugesan
  • Publication number: 20170210973
    Abstract: A method of stabilizing one or more clays within a subterranean formation comprises forming at least one treatment fluid comprising anionic silica particles, cationic silica particles, and at least one base material. The at least one treatment fluid is provided into a subterranean formation containing clay particles to attach at least a portion of the anionic silica particles and the cationic silica particles to surfaces of the clay particles and form stabilized clay particles. A method of treating one or more clays contained within a subterranean formation, and a treatment fluid for a subterranean formation are also described.
    Type: Application
    Filed: January 22, 2016
    Publication date: July 27, 2017
    Inventors: Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku, John C. Welch
  • Publication number: 20170204334
    Abstract: A method of removing fines and coarse particles from tailings comprises forming a slurry comprising water and oil sands and separating bitumen from tailings comprising fines and coarse particles. Functionalized nanoparticles each comprising a core of carbon nitride and functionalized with one or more exposed cationic groups are mixed with the tailings. The functionalized nanoparticles and the fines interact to form agglomerates comprising the functionalized nanoparticles and the fines attached to the one or more exposed cationic groups. The agglomerates are removed from the tailings to form an aqueous solution having suspended therein fewer fines and coarse particles than are suspended within the tailings.
    Type: Application
    Filed: January 20, 2016
    Publication date: July 20, 2017
    Inventors: Oleg A. Mazyar, Devesh Kumar Agrawal, Radhika Suresh, Oleksandr V. Kuznetsov, Valery N. Khabashesku
  • Publication number: 20160376492
    Abstract: Suspensions comprising polyhedral oligomeric silsesquioxane nanoparticles and at least one carrier fluid. The polyhedral oligomeric silsesquioxane may include functional groups and the suspension may further comprise carbon-based nanoparticles and silica nanoparticles. Methods of recovering hydrocarbons from a subterranean formation using the suspension are disclosed. The method comprises contacting hydrocarbons with the suspension to form an emulsion stabilized by the polyhedral oligomeric silsesquioxane nanoparticles.
    Type: Application
    Filed: October 21, 2014
    Publication date: December 29, 2016
    Inventors: Soma Chakraborty, Gaurav Agrawal, Devesh Kumar Agrawal, Valery N. Khabashesku
  • Publication number: 20160369157
    Abstract: A suspension for removing hydrocarbons from a subterranean formation includes a fluid comprising at least one of water, brine, steam, carbon dioxide, a light hydrocarbon, and an organic solvent; and a plurality of nanoparticles dispersed with the fluid. Nanoparticles of the plurality comprise silica and carbon. A method includes forming a plurality of nanoparticles and dispersing the plurality of nanoparticles with a fluid to form a suspension comprising the nanoparticles. A method of recovering a hydrocarbon material includes introducing a suspension into a subterranean formation containing hydrocarbons, forming a stabilized emulsion of the suspension and the hydrocarbons within the subterranean formation; and removing the emulsion from the subterranean formation. The suspension comprises a plurality of nanoparticles, and at least some nanoparticles of the plurality comprise silica and carbon.
    Type: Application
    Filed: June 19, 2015
    Publication date: December 22, 2016
    Inventors: DEVESH KUMAR AGRAWAL, Sankaran Murugesan, Valery N. Khabashesku
  • Publication number: 20160122551
    Abstract: In a composition including a plurality of coated diamond nanoparticles, each diamond nanoparticle may have at least one silane functional group covalently bonded to a surface thereof. A method of forming coated diamond nanoparticles may include functionalizing surfaces of diamond nanoparticles with at least one of a fluorine-containing compound and an oxidant; dispersing the functionalized diamond nanoparticles in a solvent comprising a silane functional group; and forming covalent bonds between the silane functional group and the diamond nanoparticles. A method of forming a diamond coating may include depositing the diamond nanoparticles over a substrate.
    Type: Application
    Filed: October 31, 2014
    Publication date: May 5, 2016
    Inventors: Radhika Suresh, Joshua C. Falkner, Valery N. Khabashesku, Othon R. Monteiro, Devesh Kumar Agrawal
  • Publication number: 20150353836
    Abstract: A flocculant, according to embodiments of the present disclosure, includes a core nanoparticle and at least one positively charged functional group on a surface of the core nanoparticle. The nanoparticle may comprise a silica, alumina, titania, iron oxide, iron nitride, iron carbide, or a carbon-based nanoparticle. The flocculant may be used, in a method of bitumen recovery, to neutralize and agglomerate bitumen droplets and/or mineral particles derived from oil sands ore. The bitumen droplets agglomerate about the core nanoparticle of the flocculant to form bitumen flocs, while the mineral particles agglomerate about the core nanoparticle of the flocculant to form mineral flocs. The buoyant bitumen flocs may then separate from the dense mineral flocs to enable high-yield recovery of bitumen from oil sands.
    Type: Application
    Filed: June 5, 2014
    Publication date: December 10, 2015
    Inventors: Oleksandr V. Kuznetsov, Valery N. Khabashesku, Oleg A. Mazyar, Devesh Kumar Agrawal