Patents by Inventor Dharmendra S. Modha

Dharmendra S. Modha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10846567
    Abstract: Embodiments of the invention provide a method for scene understanding based on a sequence of image frames. The method comprises converting each pixel of each image frame to neural spikes, and extracting features from the sequence of image frames by processing neural spikes corresponding to pixels of the sequence of image frames. The method further comprises encoding the extracted features as neural spikes, and classifying the extracted features.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: November 24, 2020
    Assignee: International Business Machines Corporation
    Inventors: Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Steven K. Esser, Dharmendra S. Modha
  • Publication number: 20200364535
    Abstract: Embodiments of the invention relate to a globally asynchronous and locally synchronous neuromorphic network. One embodiment comprises generating a synchronization signal that is distributed to a plurality of neural core circuits. In response to the synchronization signal, in at least one core circuit, incoming spike events maintained by said at least one core circuit are processed to generate an outgoing spike event. Spike events are asynchronously communicated between the core circuits via a routing fabric comprising multiple asynchronous routers.
    Type: Application
    Filed: October 29, 2018
    Publication date: November 19, 2020
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10839287
    Abstract: Embodiments of the invention relate to a globally asynchronous and locally synchronous neuromorphic network. One embodiment comprises generating a synchronization signal that is distributed to a plurality of neural core circuits. In response to the synchronization signal, in at least one core circuit, incoming spike events maintained by said at least one core circuit are processed to generate an outgoing spike event. Spike events are asynchronously communicated between the core circuits via a routing fabric comprising multiple asynchronous routers.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: November 17, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Paul A. Merolla, Dharmendra S. Modha
  • Patent number: 10838860
    Abstract: Memory-mapped interfaces for message passing computing systems are provided. According to various embodiments, a write request is received. The write request comprises write data and a write address. The write address is a memory address within a memory map. The write address is translated into a neural network address. The neural network address identifies at least one input location of a destination neural network. The write data is sent via a network according to the neural network address to the at least one input location of the destination neural network. A message is received via the network from a source neural network. The message comprises data and at least one address. A location in a buffer is determined based on the at least one address. The data is stored at the location in the buffer. The buffer is accessible via the memory map.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: November 17, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Filipp A. Akopyan, John V. Arthur, Andrew S. Cassidy, Michael V. DeBole, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 10831595
    Abstract: A computer-implemented method according to one embodiment includes, prior to an execution of a deterministic program, determining a pre-computed check sequence for a first plurality of values associated with the execution of the deterministic program, during the execution of the deterministic program, determining a runtime check sequence for a second plurality of values associated with the execution of the deterministic program, comparing the pre-computed check sequence to the runtime check sequence; and identifying one or more errors associated with the execution of the deterministic program, based on the comparing.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Andrew S. Cassidy, Dharmendra S. Modha, John V. Arthur, Jun Sawada
  • Patent number: 10832125
    Abstract: One embodiment of the invention provides a system for mapping a neural network onto a neurosynaptic substrate. The system comprises a metadata analysis unit for analyzing metadata information associated with one or more portions of an adjacency matrix representation of the neural network, and a mapping unit for mapping the one or more portions of the matrix representation onto the neurosynaptic substrate based on the metadata information.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Arnon Amir, Rathinakumar Appuswamy, Pallab Datta, Myron D. Flickner, Paul A. Merolla, Dharmendra S. Modha, Benjamin G. Shaw
  • Patent number: 10832151
    Abstract: Embodiments of the invention relate to implementing a probabilistic graphical model (PGM) using magnetic tunnel junctions (MTJs). One embodiment comprises a memory array of magnetic tunnel junctions and a driver unit for programming the memory array to represent a probabilistic graphical model. The magnetic tunnel junctions are organized into multiple subsets of magnetic tunnel junctions. The driver unit selectively applies an electrical pulse to a subset of magnetic tunnel junctions to program information representing a probabilistic belief state in said subset of magnetic tunnel junctions.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bryan L. Jackson, Dharmendra S. Modha
  • Patent number: 10832121
    Abstract: Embodiments of the present invention provide a method for feature extraction comprising generating synaptic connectivity information for a neurosynaptic core circuit. The core circuit comprises one or more electronic neurons, one or more electronic axons, and an interconnect fabric including a plurality of synapse devices for interconnecting the neurons with the axons. The method further comprises initializing the interconnect fabric based on the synaptic connectivity information generated, and extracting a set of features from input received via the electronic axons. The set of features extracted comprises a set of features with reduced correlation.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rathinakumar Appuswamy, Myron D. Flickner, Dharmendra S. Modha
  • Patent number: 10810487
    Abstract: A reconfigurable neural network circuit is provided. The reconfigurable neural network circuit comprises an electronic synapse array including multiple synapses interconnecting a plurality of digital electronic neurons. Each neuron comprises an integrator that integrates input spikes and generates a signal when the integrated inputs exceed a threshold. The circuit further comprises a control module for reconfiguring the synapse array. The control module comprises a global final state machine that controls timing for operation of the circuit, and a priority encoder that allows spiking neurons to sequentially access the synapse array.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: October 20, 2020
    Assignee: International Business Machines Corporation
    Inventors: Bernard V. Brezzo, Leland Chang, Steven K. Esser, Daniel J. Friedman, Yong Liu, Dharmendra S. Modha, Robert K. Montoye, Bipin Rajendran, Jae-sun Seo, Jose A. Tierno
  • Patent number: 10785745
    Abstract: Embodiments of the invention provide a system for scaling multi-core neurosynaptic networks. The system comprises multiple network circuits. Each network circuit comprises a plurality of neurosynaptic core circuits. Each core circuit comprises multiple electronic neurons interconnected with multiple electronic axons via a plurality of electronic synapse devices. An interconnect fabric couples the network circuits. Each network circuit has at least one network interface. Each network interface for each network circuit enables data exchange between the network circuit and another network circuit by tagging each data packet from the network circuit with corresponding routing information.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: September 22, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 10782726
    Abstract: In one embodiment, a computer program product for optimizing core utilization in a neurosynaptic network includes a computer readable storage medium having program instructions embodied therewith, where the computer readable storage medium is not a transitory signal per se, and where the program instructions are executable by a processor to cause the processor to perform a method including identifying, by the processor, one or more unused portions of a neurosynaptic network, and for each of the one or more unused portions of the neurosynaptic network, disconnecting, by the processor, the unused portion from the neurosynaptic network.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: September 22, 2020
    Assignee: International Business Machines Corporation
    Inventors: Arnon Amir, Pallab Datta, Nimrod Megiddo, Dharmendra S. Modha
  • Patent number: 10769519
    Abstract: One embodiment of the invention provides a system comprising at least one data-to-spike converter unit for converting input numeric data received by the system to spike event data. Each data-to-spike converter unit is configured to support one or more spike codes.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Steven K. Esser, Myron D. Flickner, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada, Benjamin G. Shaw
  • Patent number: 10755165
    Abstract: One embodiment of the invention provides a system comprising at least one spike-to-data converter unit for converting spike event data generated by neurons to output numeric data. Each spike-to-data converter unit is configured to support one or more spike codes.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Steven K. Esser, Myron D. Flickner, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada, Benjamin G. Shaw
  • Patent number: 10755166
    Abstract: Embodiments of the present invention provide a method for feature extraction using multiple neurosynaptic core circuits including one or more input core circuits for receiving input and one or more output core circuits for generating output. The method comprises receiving a set of input data via the input core circuits, and extracting a first set of features from the input data using the input core circuits. Each feature of the first set of features is based on a subset of the input data. The method further comprises reordering the first set of features using the input core circuits, and generating a second set of features by combining the reordered first set of features using the output core circuits. The second set of features comprises a set of features with reduced correlation. Each feature of the second set of features is based on the entirety of said set of input data.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: August 25, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rathinakumar Appuswamy, Myron D. Flickner, Dharmendra S. Modha
  • Patent number: 10740282
    Abstract: Embodiments of the invention relate to processor arrays, and in particular, a processor array with interconnect circuits for bonding semiconductor dies. One embodiment comprises multiple semiconductor dies and at least one interconnect circuit for exchanging signals between the dies. Each die comprises at least one processor core circuit. Each interconnect circuit corresponds to a die of the processor array. Each interconnect circuit comprises one or more attachment pads for interconnecting a corresponding die with another die, and at least one multiplexor structure configured for exchanging bus signals in a reversed order.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: August 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, John E. Barth, Jr., Andrew S. Cassidy, Subramanian S. Iyer, Bryan L. Jackson, Paul A. Merolla, Dharmendra S. Modha, Jun Sawada
  • Patent number: 10725494
    Abstract: Reduction in the number of neurons and axons in a neurosynaptic network while maintaining its functionality is provided. A neural network description describing a neural network is read. One or more functional unit of the neural network is identified. The one or more functional unit of the neural network is optimized. An optimized neural network description is written based on the optimized functional unit.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: July 28, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Arnon Amir, Pallab Datta, Dharmendra S. Modha
  • Publication number: 20200226455
    Abstract: Core utilization optimization by dividing computational blocks across neurosynaptic cores is provided. In some embodiments, a neural network description describing a neural network is read. The neural network comprises a plurality of functional units on a plurality of cores. A functional unit is selected from the plurality of functional units. The functional unit is divided into a plurality of subunits. The plurality of subunits are connected to the neural network in place of the functional unit. The plurality of functional units and the plurality of subunits are reallocated between the plurality of cores. One or more unused cores are removed from the plurality of cores. An optimized neural network description is written based on the reallocation.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Arnon Amir, Pallab Datta, Nimrod Megiddo, Dharmendra S. Modha
  • Patent number: 10713561
    Abstract: Embodiments of the invention relate to a multiplexed neural core circuit. One embodiment comprises a core circuit including a memory device that maintains neuronal attributes for multiple neurons. The memory device has multiple entries. Each entry maintains neuronal attributes for a corresponding neuron. The core circuit further comprises a controller for managing the memory device. In response to neuronal firing events targeting one of said neurons, the controller retrieves neuronal attributes for the target neuron from a corresponding entry of the memory device, and integrates said firing events based on the retrieved neuronal attributes to generate a firing event for the target neuron.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: July 14, 2020
    Assignee: International Business Machines Corporation
    Inventors: Rodrigo Alvarez-Icaza Rivera, John V. Arthur, Andrew S. Cassidy, Paul A. Merolla, Dharmendra S. Modha
  • Publication number: 20200202205
    Abstract: Massively parallel neural inference computing elements are provided. A plurality of multipliers is arranged in a plurality of equal-sized groups. Each of the plurality of multipliers is adapted to, in parallel, apply a weight to an input activation to generate an output. A plurality of adders is operatively coupled to one of the groups of multipliers. Each of the plurality of adders is adapted to, in parallel, add the outputs of the multipliers within its associated group to generate a partial sum. A plurality of function blocks is operatively coupled to one of the plurality of adders. Each of the plurality of function blocks is adapted to, in parallel, apply a function to the partial sum of its associated adder to generate an output value.
    Type: Application
    Filed: March 4, 2020
    Publication date: June 25, 2020
    Inventors: Rathinakumar Appuswamy, John V. Arthur, Andrew S. Cassidy, Pallab Datta, Steven K. Esser, Myron D. Flickner, Jennifer Klamo, Dharmendra S. Modha, Hartmut Penner, Jun Sawada, Brian Taba
  • Patent number: 10679120
    Abstract: Embodiments of the present invention relate to providing power minimization in a multi-core neurosynaptic network. In one embodiment of the present invention, a method of and computer program product for power-driven synaptic network synthesis is provided. Power consumption of a neurosynaptic network is modeled as wire length. The neurosynaptic network comprises a plurality of neurosynaptic cores. An arrangement of the synaptic cores is determined by minimizing the wire length.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: June 9, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Charles J. Alpert, Pallab Datta, Myron D. Flickner, Zhuo Li, Dharmendra S. Modha, Gi-Joon Nam