Patents by Inventor Diane R. Hammerstad

Diane R. Hammerstad has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220184610
    Abstract: In example implementations, an apparatus is provided. The apparatus includes a channel, an energy source, and a transfection chamber. The channel includes an indentation to hold a cell. The energy source is to apply a shockwave to the cell in the channel to porate the cell. The transfection chamber is to store a reagent to be inserted into the cell after the cell is porated.
    Type: Application
    Filed: July 25, 2019
    Publication date: June 16, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Alexander Govyadinov, Viktor Shkolnikov, Diane R. Hammerstad
  • Publication number: 20220162645
    Abstract: In example implementations, an apparatus is provided. The apparatus includes a channel, a thermal inkjet (TIJ) resistor, and a transfection chamber. The TIJ resistor is to apply heat to a cell in the channel to porate the cell. The transfection chamber is to store a reagent to be inserted into the cell after the cell is porated.
    Type: Application
    Filed: July 25, 2019
    Publication date: May 26, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Alexander Govyadinov, Diane R. Hammerstad
  • Publication number: 20220146544
    Abstract: Aspects of the present disclosure relate to evaporation compensation in fluidic devices. An example apparatus for evaporation compensation includes an assessment circuit to determine an amount of evaporation of a volume dispensed in a microwell of a fluidic device. The amount of evaporation may be determined based on the volume in the microwell, and an amount of time after dispensing the volume in the microwell. A compensation circuit may determine, based on the amount of evaporation, a compensation factor for the microwell including an amount of a normalizing fluid to compensate for the amount of evaporation. The compensation circuit may also create a normalization profile for the fluidic device, including an association between the fluidic device and the compensation factor. A dispensing circuit may dispense the normalizing fluid in the microwell according to the normalization profile.
    Type: Application
    Filed: July 31, 2019
    Publication date: May 12, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Diane R. Hammerstad, Jeffrey A. Nielsen, Christie Dudenhoefer, Matthew Smith
  • Patent number: 11279137
    Abstract: An example device includes a first substrate including a first array of droplet ejectors to eject droplets of a first fluid. The example device further includes a first target medium immovably positioned relative to the first substrate to receive droplets of the first fluid from a first subset of droplet ejectors of the first array of droplet ejectors. A second subset of droplet ejectors of the first array of droplet ejectors is positioned to eject droplets of the first fluid to miss the first target medium.
    Type: Grant
    Filed: July 17, 2018
    Date of Patent: March 22, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexander Govyadinov, Pavel Kornilovich, Diane R Hammerstad
  • Publication number: 20220080421
    Abstract: A system includes a microchannel analysis region, a first fluid actuation device, a second fluid actuation device, a sensor, and a controller. The first fluid actuation device is at a first end of the microchannel analysis region. The second fluid actuation device is at a second end of the microchannel analysis region opposite to the first end. The sensor is within the microchannel analysis region between the first fluid actuation device and the second fluid actuation device. The sensor measures an impedance of a fluid within the microchannel analysis region. The controller activates the first fluid actuation device to generate a first pressure wave in the fluid and activates the second fluid actuation device to generate a second pressure wave in the fluid. The first pressure wave and the second pressure wave converge at the sensor.
    Type: Application
    Filed: May 13, 2019
    Publication date: March 17, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Alexander Govyadinov, Diane R. Hammerstad
  • Publication number: 20220080413
    Abstract: A disposable microfluidic cassette can include a substrate and an engagement feature associated with the substrate to removably join the cassette with a cassette-receiver of an analytical system. A microfluidic network can be carried by the substrate. The microfluidic network can include a fluid inlet, a fluid outlet, and a sample manipulation portion fluidly coupling the fluid inlet to the fluid outlet. An ejector can be associated with the microfluidic network to move fluid out of the disposable microfluidic cassette via the fluid outlet.
    Type: Application
    Filed: March 8, 2019
    Publication date: March 17, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Diane R. HAMMERSTAD, Alexander GOVYADINOV
  • Publication number: 20220080652
    Abstract: In one example, a processor readable medium having instructions thereon that when executed cause an additive manufacturing machine to vary operating characteristics of a fusing laser beam at multiple different voxel locations in a layer of build material according to an energy dosage to be applied at each voxel location in an object slice, including multiple different energy dosages for corresponding multiple different voxel locations in the slice.
    Type: Application
    Filed: November 24, 2021
    Publication date: March 17, 2022
    Inventors: Cary G. Addington, David A. Champion, Mohammed S. Shaarawi, James McKinnell, Diane R. Hammerstad
  • Publication number: 20220073863
    Abstract: In one example in accordance with the present disclosure, a chemical lysis system is described. The chemical lysis system includes a microfluidic channel to serially feed individual cells from a volume of cells to at least one chemical lysing device. Each chemical lysing device includes at least one lysing chamber to receive, from the microfluidic channel, a single cell to be lysed. The chemical lysing device also includes an orifice disposed in each lysing chamber to receive a lysing agent and a sensor to detect a state within the lysing chamber. A controller of the chemical lysis system analyzes a ruptured cell.
    Type: Application
    Filed: February 1, 2019
    Publication date: March 10, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Alexander Govyadinov, Diane R. Hammerstad
  • Publication number: 20220065815
    Abstract: In one example in accordance with the present disclosure, a fluid analysis device is described. The fluid analysis device includes a chamber to receive a number of fluids. At least one fluid includes an electrochemical label with a unique electrochemical response to an applied electrical potential. A multi-electrode sensor of the fluid analysis device is disposed within the chamber and detects electrical signals within the chamber. The fluid analysis device also includes a controller coupled to the multi-electrode sensor. The controller applies an electrical potential across multiple electrodes of the multi-electrode sensor and identifies, from the electrical signal detected by the multi-electrode sensor, fluids currently in the chamber based on the unique electrochemical responses of associated electrochemical labels.
    Type: Application
    Filed: May 7, 2019
    Publication date: March 3, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Tod Woodford, Alexander Govyadinov, Brian J. Keefe, Diane R. Hammerstad
  • Publication number: 20220018755
    Abstract: A particle classification system may include a volume to contain a fluid having a suspended particle, electrodes proximate the volume to apply an electric field to rotate the suspended particle, a focused light source, a scattered light sensor to sense light from the focused light source that has scattered upon impinging the rotating suspended particle and a controller to classify the particle based at least in part upon signals from the scattered light sensor.
    Type: Application
    Filed: January 13, 2019
    Publication date: January 20, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Viktor Shkolnikov, Diane R. Hammerstad
  • Patent number: 11207827
    Abstract: In one example, a processor readable medium having instructions thereon that when executed cause an additive manufacturing machine to vary operating characteristics of a fusing laser beam at multiple different voxel locations in a layer of build material according to an energy dosage to be applied at each voxel location in an object slice, including multiple different energy dosages for corresponding multiple different voxel locations in the slice.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: December 28, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Cary G. Addington, David A. Champion, Mohammed S. Shaarawi, James McKinnell, Diane R. Hammerstad
  • Patent number: 11203017
    Abstract: According to an example, a microfluidic apparatus may include a channel, a foyer, in which the foyer is in fluid communication with the channel and in which the channel has a smaller width than the foyer, a sensor to sense a property of a fluid passing through the channel, a nozzle in fluid communication with the foyer, and an actuator positioned in line with the nozzle. The microfluidic apparatus may also include a controller to determine whether the sensed property of the fluid meets a predetermined condition and to perform a predefined action in response to the sensed property of the fluid meeting the predetermined condition.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: December 21, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey A Nielsen, Manish Giri, Chantelle Domingue, Kenneth Ward, Christie Dudenhoefer, Matthew David Smith, Joshua M. Yu, Diane R. Hammerstad, Hilary Ely
  • Publication number: 20210370668
    Abstract: One example provides a fluidic die including a nozzle layer disposed on a substrate, the nozzle layer having an upper surface opposite the substrate and including a plurality of nozzles formed therein, each nozzle including a fluid chamber and a nozzle orifice extending through the nozzle layer from the upper surface to the fluid chamber. A conductive trace is exposed to the upper surface of the nozzle layer and extends proximate to a portion of the nozzle orifices, an impedance of the conductive trace indicative of a surface condition of the upper surface of the nozzle layer.
    Type: Application
    Filed: January 31, 2019
    Publication date: December 2, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Eric Martin, Daryl E. Anderson, James R. Przybyla, Chien-Hua Chen, Diane R. Hammerstad
  • Publication number: 20210346885
    Abstract: In one example in accordance with the present disclosure, a cellular analytic system is described. The cellular analytic system includes an analytic device. The analytic device includes a chamber to receive a cell to be analyzed. At least one lysing element agitates the cell and at least one sensor detects a change in the cell based on an agitation of the cell. The cellular analytic system also includes a controller to determine a rupture threshold of the cell based on parameters of the agitation when a cell membrane ruptures.
    Type: Application
    Filed: February 1, 2019
    Publication date: November 11, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Alexander Govyadinov, Viktor Shkolnikov, Diane R. Hammerstad
  • Publication number: 20210331152
    Abstract: An example device includes a droplet ejector including a nozzle to eject droplets of a fluid and a target medium to receive the droplets of the fluid. The target medium is separated from the droplet ejector by a gap to be traversed by the droplets. The example device further includes a frame affixing the target medium to the droplet ejector. The target medium is immovably held with respect to the droplet ejector.
    Type: Application
    Filed: July 17, 2018
    Publication date: October 28, 2021
    Inventors: Pavel KORNILOVICH, John LAHMANN, Alexander GOVYADINOV, Diane R HAMMERSTAD
  • Publication number: 20210331482
    Abstract: An example device includes a first substrate including a first array of droplet ejectors to eject droplets of a first fluid. The example device further includes a first target medium immovably positioned relative to the first substrate to receive droplets of the first fluid from a first subset of droplet ejectors of the first array of droplet ejectors. A second subset of droplet ejectors of the first array of droplet ejectors is positioned to eject droplets of the first fluid to miss the first target medium.
    Type: Application
    Filed: July 17, 2018
    Publication date: October 28, 2021
    Inventors: Alexander Govyadinov, Pavel Kornilovich, Diane R Hammerstad
  • Patent number: 11136703
    Abstract: Example implementations relate to a mixing chamber for laundry supplies. For example, an appliance may include a mixing chamber to receive at least one laundry supply and a processor coupled to the mixing chamber. The processor is to identify a user-specified setting associated with a laundry load, determine a characteristic of the laundry load, calculate an amount of the at least one laundry supply to apply to the laundry load based on the user-specified setting and the characteristic, and provide the amount of the at least one laundry supply to the mixing chamber, where the mixing chamber is to mix the amount of the at least one laundry supply.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: October 5, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Michael W Cumbie, David Olsen, Diane R Hammerstad, Eric M Laplante
  • Patent number: 11135579
    Abstract: An apparatus includes a media that includes an encoded pattern to indicate a location of each of a plurality of dispensing locations on a receiving area for a pipette dispenser. The encoded pattern is employed to guide the pipette dispenser to dispense a volume to a selected dispensing location from the plurality of dispensing locations based on a predetermined dispensing location on the receiving area.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 5, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Diane R. Hammerstad, Matthew David Smith, Hilary Ely
  • Publication number: 20210238537
    Abstract: In one example in accordance with the present disclosure, a conductivity-based lysis monitor is described. The lysis monitoring device includes a lysing chamber to receive a cell to be lysed and at least one lysing device to rupture a cell membrane. At least one pair of electrodes are disposed in the lysing chamber to detect a level of conductivity in the lysing chamber. A controller of the device determines when the cell membrane has ruptured based on detected levels of conductivity in the lysing chamber.
    Type: Application
    Filed: August 10, 2018
    Publication date: August 5, 2021
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Alexander Govyadinov, Diane R. Hammerstad, Viktor Shkolnikov
  • Publication number: 20210165007
    Abstract: In one example in accordance with the present disclosure, a fluidic die is described. The fluidic die includes a plurality of ejection subassemblies. Each ejection subassembly includes an ejection chamber to hold a volume of fluid and an opening through which the volume of fluid is ejected via a fluid actuator. A pitch of the ejection subassemblies aligns with a spatial arrangement of nanowells in an array of nanowells on a substrate.
    Type: Application
    Filed: June 4, 2018
    Publication date: June 3, 2021
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey A. NIELSEN, Christie DUDENHOEFER, Debora J. THOMAS, Roberto A. PUGLIESE, Diane R. HAMMERSTAD