Patents by Inventor Dianne Marie Meyer

Dianne Marie Meyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11352700
    Abstract: Electrically-conductive silver metal is provided in a pattern on a substrate having a first supporting side and a second opposing supporting side. One or both of the first supporting side and the second opposing supporting side has one or more electrically-conductive silver metal containing patterns containing the electrically-conductive silver metal; an ?-oxy carboxylate; a 5- or 6-membered N-heteroaromatic compound; and a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. Such articles can be used in various devices and electrodes.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: June 7, 2022
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Publication number: 20190264331
    Abstract: Electrically-conductive silver metal is provided in a pattern on a substrate having a first supporting side and a second opposing supporting side. One or both of the first supporting side and the second opposing supporting side has one or more electrically-conductive silver metal containing patterns containing the electrically-conductive silver metal; an ?-oxy carboxylate; a 5- or 6-membered N-heteroaromatic compound; and a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. Such articles can be used in various devices and electrodes.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Patent number: 10364500
    Abstract: Electrically-conductive silver metal can be provided in a thin film or pattern on a substrate from a silver complex having reducing silver ions and represented by: wherein L represents an ?-oxy carboxylate; P represents a primary alkylamine compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. The silver complex is mixed in a hydroxy-free, nitrile-containing aprotic solvent with a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. The reducible silver ions in the a thermally sensitive thin film or pattern can be thermally converted to electrically-conductive metallic silver under suitable heating conditions to provide a product article that can be used in various devices.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: July 30, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Patent number: 10358725
    Abstract: Electrically-conductive silver metal can be provided in a thin film or pattern on a substrate from a silver complex having reducing silver ions and represented by: (Ag+)a(L)b(P)c?? (I) wherein L represents an ?-oxy carboxylate; P represents a 5- or 6-membered N-heteroaromatic compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. The silver complex is mixed in a hydroxy-free, nitrile-containing aprotic solvent with a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. The reducible silver ions in the a thermally sensitive thin film or pattern can be thermally converted to electrically-conductive metallic silver under suitable heating conditions to provide a product article that can be used in various devices.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: July 23, 2019
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Publication number: 20180362548
    Abstract: Electrically-conductive silver metal can be provided in a thin film or pattern on a substrate from a silver complex having reducing silver ions and represented by: wherein L represents an ?-oxy carboxylate; P represents a primary alkylamine compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. The silver complex is mixed in a hydroxy-free, nitrile-containing aprotic solvent with a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. The reducible silver ions in the a thermally sensitive thin film or pattern can be thermally converted to electrically-conductive metallic silver under suitable heating conditions to provide a product article that can be used in various devices.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Publication number: 20180362547
    Abstract: Electrically-conductive silver metal can be provided in a thin film or pattern on a substrate from a silver complex having reducing silver ions and represented by: (Ag+)a(L)b(P)c?? (I) wherein L represents an ?-oxy carboxylate; P represents a 5- or 6-membered N-heteroaromatic compound; a is 1 or 2; b is 1 or 2; and c is 1, 2, 3, or 4, provided that when a is 1, b is 1, and when a is 2, b is 2. The silver complex is mixed in a hydroxy-free, nitrile-containing aprotic solvent with a polymer that is either (i) a hydroxy-containing cellulosic polymer or (ii) a non-cellulosic acrylic polymer having a halo- or hydroxy-containing side chain. The reducible silver ions in the a thermally sensitive thin film or pattern can be thermally converted to electrically-conductive metallic silver under suitable heating conditions to provide a product article that can be used in various devices.
    Type: Application
    Filed: June 14, 2017
    Publication date: December 20, 2018
    Inventors: Deepak Shukla, Kevin M. Donovan, Dianne Marie Meyer
  • Patent number: 9772552
    Abstract: A thiosulfate polymer composition includes an electron-accepting photosensitizer component, either as a separate compound or as an attachment to the thiosulfate polymer. The thiosulfate polymer composition can be applied to various articles, or used to form a predetermined polymeric pattern after photothermal reaction to form crosslinked disulfide bonds, removing non-crosslinked polymer, and reaction with a disulfide-reactive material. Such thiosulfate polymer compositions can also be used to sequester metals in nanoparticulate form, and as a way for shaping human hair in hairdressing operations.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: September 26, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Mark R. Mis, Dianne Marie Meyer
  • Patent number: 9721697
    Abstract: Organic polymeric bi-metallic alkoxide or aryloxide composites are used as dielectric materials in various devices with improved properties such as improved mobility. These composites comprise a poly(meth)acrylate or polyester having metal coordination sites, and the same or different bi-metallic alkoxide or aryloxide molecules that are coordinated with the organic polymer. The bi-metallic alkoxide or aryloxide molecules can be represented by Structure (I) shown herein. Such composites are generally soluble at room temperature in various organic solvents and be provided in homogeneous organic solvent solutions that can be suitably applied to a substrate to form dielectric materials.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: August 1, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Deepak Shukla, Dianne Marie Meyer, Mark R. Mis, Matthew Dirmyer
  • Publication number: 20150011699
    Abstract: Organic polymeric bi-metallic alkoxide or aryloxide composites are used as dielectric materials in various devices with improved properties such as improved mobility. These composites comprise a poly(meth)acrylate or polyester having metal coordination sites, and the same or different bi-metallic alkoxide or aryloxide molecules that are coordinated with the organic polymer. The bi-metallic alkoxide or aryloxide molecules can be represented by Structure (I) shown herein. Such composites are generally soluble at room temperature in various organic solvents and be provided in homogeneous organic solvent solutions that can be suitably applied to a substrate to form dielectric materials.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Deepak Shukla, Dianne Marie Meyer, Mark R. Mis, Matthew Dirmyer
  • Publication number: 20140287349
    Abstract: A thiosulfate polymer composition includes an electron-accepting photosensitizer component, either as a separate compound or as an attachment to the thiosulfate polymer. The thiosulfate polymer composition can be applied to various articles, or used to form a predetermined polymeric pattern after photothermal reaction to form crosslinked disulfide bonds, removing non-crosslinked polymer, and reaction with a disulfide-reactive material. Such thiosulfate polymer compositions can also be used to sequester metals in nanoparticulate form, and as a way for shaping human hair in hairdressing operations.
    Type: Application
    Filed: January 20, 2014
    Publication date: September 25, 2014
    Inventors: Deepak Shukla, Mark R. Mis, Dianne Marie Meyer