Patents by Inventor Didier Landru
Didier Landru has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230260841Abstract: A method of producing a composite structure comprising a thin layer of monocrystalline silicon carbide arranged on a carrier substrate of silicon carbide comprises: a) a step of provision of an initial substrate of monocrystalline silicon carbide, b) a step of epitaxial growth of a donor layer of monocrystalline silicon carbide on the initial substrate, to form a donor substrate, c) a step of ion implantation of light species into the donor layer, to form a buried brittle plane delimiting the thin layer, d) a step of formation of a carrier substrate of silicon carbide on the free surface of the donor layer, comprising a deposition at a temperature of between 400° C. and 1100° C., e) a step of separation along the buried brittle plane, to form the composite structure and the remainder of the donor substrate, and f) a step of chemical-mechanical treatment(s) of the composite structure.Type: ApplicationFiled: October 26, 2020Publication date: August 17, 2023Inventors: Ionut Radu, Hugo Biard, Christophe Maleville, Eric Guiot, Didier Landru
-
Publication number: 20230230868Abstract: A temporary substrate, which is detachable at a detachment temperature higher than 1000° C. comprises: a semiconductor working layer extending along a main plane, a carrier substrate, an intermediate layer having a thickness less than 20 nm arranged between the working layer and the carrier substrate, a bonding interface located in or adjacent the intermediate layer, gaseous atomic species distributed according to a concentration profile along the axis normal to the main plane, the atoms remaining trapped in the intermediate layer and/or in an adjacent layer of the carrier substrate with a thickness less than or equal to 10 nm and/or in an adjacent sublayer of the working layer with a thickness less than or equal to 10 nm when the temporary substrate is subjected to a temperature lower than the detachment temperature.Type: ApplicationFiled: April 26, 2021Publication date: July 20, 2023Inventors: Hugo Biard, Gweltaz Gaudin, Séverin Rouchier, Didier Landru
-
Patent number: 11670540Abstract: Substrates may include a useful layer affixed to a support substrate. A surface of the useful layer located on a side of the useful layer opposite the support substrate may include a first region and a second region. The first region may have a first surface roughness, may be located proximate to a geometric center of the surface, and may occupy a majority of an area of the surface. The second region may have a second, higher surface roughness, may be located proximate to a periphery of the surface, and may occupy a minority of the area of the surface.Type: GrantFiled: March 2, 2021Date of Patent: June 6, 2023Assignees: Soitec, Commissariat à l'Énergie Atomique et aux Énergies AlternativesInventors: Didier Landru, Nadia Ben Mohamed, Oleg Kononchuk, Frédéric Mazen, Damien Massy, Shay Reboh, François Rieutord
-
Publication number: 20230160102Abstract: A method for manufacturing a composite structure comprising a thin layer made of monocrystalline silicon carbide arranged on a carrier substrate made of silicon carbide, the method comprising: a) a step of providing a donor substrate made of monocrystalline SiC, the donor substrate comprising a donor layer produced by epitaxial growth on an initial substrate, the donor layer exhibiting a density of crystal defects that is lower than that of the initial substrate; b) a step of ion implantation of light species into the donor layer, in order to form a buried brittle plane delimiting the thin layer between the buried brittle plane and a free face of the donor layer; c) a succession of n steps of formation of carrier layers, with n greater than or equal to 2, the n carrier layers being arranged on the donor layer successively on one another and forming the carrier substrate, each step of formation comprising a chemical vapor deposition, at a temperature of between 400° C. and 1100° C.Type: ApplicationFiled: January 12, 2021Publication date: May 25, 2023Inventors: Hugo Biard, Ionut Radu, Didier Landru
-
Publication number: 20220319910Abstract: A process for hydrophilic bonding first and second substrates, comprising: —bringing the first and second substrates into contact to form a bonding interface between main surfaces of the first and second substrates, and —applying a heat treatment to close the bonding interface. The process further comprises, before the step of bringing into contact, depositing, on the main surface of the first and/or second substrate, a bonding layer comprising a non-metallic material that is permeable to dihydrogen and that has, at the temperature of the heat treatment, a yield strength lower than that of at least one of the materials of the first substrate and of the second substrate located at the bonding interface. The layer has a thickness between 1 and 6 nm, and the heat treatment is carried out at a temperature lower than or equal to 900° C., and preferably lower than or equal to 600° C.Type: ApplicationFiled: July 13, 2020Publication date: October 6, 2022Inventors: Vincent Larrey, François Rieutord, Jean-Michel Hartmann, Frank Fournel, Didier Landru, Oleg Kononchuk, Ludovic Ecarnot
-
Publication number: 20220278269Abstract: A method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a?) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c).Type: ApplicationFiled: May 16, 2022Publication date: September 1, 2022Inventor: Didier Landru
-
Patent number: 11424156Abstract: A detachable structure comprises a carrier substrate and a silicon oxide layer positioned on the substrate at a first interface. The detachable structure is notable in that: the oxide layer has a thickness of less than 200 nm; light hydrogen and/or helium species are distributed deeply and over the entire area of the structure according to an implantation profile, a maximum concentration of which is located in the thickness of the oxide layer; the total dose of implanted light species, relative to the thickness of the oxide layer, exceeds, at least by a factor of five, the solubility limit of these light species in the oxide layer.Type: GrantFiled: January 14, 2019Date of Patent: August 23, 2022Assignee: SoitecInventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed, Rénald Guerin, Norbert Colombet
-
Publication number: 20220181173Abstract: A system for fracturing a plurality of wafer assemblies, one of the wafers of each assembly comprising a plane of weakness and each assembly comprising a peripheral lateral groove comprises: a cradle for keeping the assemblies of the plurality of assemblies spaced apart and parallel to one another, along a storage axis; a separation device for applying separating forces in the peripheral groove of an assembly arranged in a fracture zone of the separating device, the separating force aiming to separate the wafers of the assembly from one another so as to initiate its fracture at the plane of weakness; and a drive device configured to move along the storage axis of the cradle opposite the separating device so as to successively place an assembly of the cradle in the fracture zone of the separation device.Type: ApplicationFiled: February 26, 2020Publication date: June 9, 2022Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
-
Publication number: 20220172983Abstract: A method for transferring a useful layer from a donor substrate to a carrier substrate comprises: a) providing the donor substrate, the donor substrate including a buried weakened plane; b) providing the carrier substrate; c) joining the donor substrate to the carrier substrate to form a bonded structure; and d) annealing the bonded structure in order to increase the level of weakening of the buried weakened plane. A predetermined stress is applied to the buried weakened plane during the annealing for a period of time, the predetermined stress being selected so as to initiate the splitting wave once a given level of weakening has been reached. At the end of the period of time, the given level of weakening having been reached, the predetermined stress causes initiation and self-sustained propagation of the splitting wave along the buried weakened plane, resulting in the useful layer being transferred to the carrier substrate.Type: ApplicationFiled: February 26, 2020Publication date: June 2, 2022Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
-
Patent number: 11349065Abstract: A method for manufacturing a hybrid structure comprising an effective layer of piezoelectric material having an effective thickness and disposed on a supporting substrate having a substrate thickness and a thermal expansion coefficient lower than that of the effective layer includes: a) a step of providing a bonded structure comprising a piezoelectric material donor substrate and the supporting substrate, b) a first step of thinning the donor substrate to form a thinned layer having an intermediate thickness and disposed on the supporting substrate, the assembly forming a thinned structure; c) a step of heat treating the thinned structure at an annealing temperature; and d) a second step, after step c), of thinning the thinned layer to form the effective layer. The method also comprises, prior to step b), a step a?) of determining a range of intermediate thicknesses that prevent the thinned structure from being damaged during step c).Type: GrantFiled: October 17, 2016Date of Patent: May 31, 2022Assignee: SoitecInventor: Didier Landru
-
Publication number: 20220157650Abstract: A method for transferring a useful layer to a carrier substrate comprises: joining a front face of a donor substrate to a carrier substrate along a bonding interface to form a bonded structure; annealing the bonded structure to apply a weakening thermal budget thereto and bring a buried weakened plane in the donor substrate to a defined level of weakening, the anneal reaching a maximum hold temperature; and initiating a self-sustained and propagating splitting wave in the buried weakened plane by applying a stress to the bonded structure to lead to the useful layer being transferred to the carrier substrate. The initiation of the splitting wave occurs when the bonded structure experiences a thermal gradient defining a hot region and a cool region of the bonded structure, the stress being applied locally in the cool region, and the hot region experiencing a temperature lower than the maximum hold temperature.Type: ApplicationFiled: February 26, 2020Publication date: May 19, 2022Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
-
Publication number: 20220157651Abstract: A method for transferring a useful layer to a carrier substrate, includes the following steps: a) providing a donor substrate including a buried weakened plane; b) providing a carrier substrate; c) joining the donor substrate, by its front face, to the carrier substrate along a bonding interface so as to form a bonded structure; d) annealing the bonded structure in order to apply a weakening thermal budget thereto and to bring the buried weakened plane to a defined level of weakening; and e) initiating a splitting wave in the weakened plane by applying a stress to the bonded structure, the splitting wave self-propagating along the weakened plane to result in the useful layer being transferred to the carrier substrate. The splitting wave is initiated when the bonded structure is subjected to a temperature between 150° C. and 250° C.Type: ApplicationFiled: February 26, 2020Publication date: May 19, 2022Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
-
Publication number: 20220148911Abstract: A process for transferring blocks from a donor to a receiver substrate, comprises: arranging a mask facing a free surface of the donor substrate, the mask having one or more openings that expose the free surface of the donor substrate, the openings distributed according to a given pattern; forming, by ion implantation through the mask, an embrittlement plane in the donor substrate vertically in line with at least one region exposed through the mask, the embrittlement plane delimiting a respective surface region; forming a block that is raised relative to the free surface of the donor substrate localized vertically in line with each respective embrittlement plane, the block comprising the respective surface region; bonding the donor substrate to the receiver substrate via each block located at the bonding interface, after removing the mask; and detaching the donor substrate along the localized embrittlement planes to transfer blocks onto the receiver substrate.Type: ApplicationFiled: March 25, 2020Publication date: May 12, 2022Inventors: Didier Landru, Bruno Ghyselen
-
Patent number: 11276605Abstract: A method of fabricating a semiconductor substrate includes the following activities: a) providing a donor substrate with a weakened zone inside the donor substrate, the weakened zone forming a border between a layer to be transferred and the rest of the donor substrate, b) attaching the donor substrate to a receiver substrate, the layer to be transferred being located at the interface between the donor substrate and the receiver substrate; c) detaching the receiver substrate along with the transferred layer from the rest of the donor substrate, at the weakened zone; and d) at least one step of smoothing the surface of the transferred layer, wherein the semiconductor substrate obtained from step c) is kept, at least from the moment of detachment until the end of the smoothing step, in a non-oxidizing inert atmosphere or in a mixture of non-oxidizing inert gases. Semiconductor substrates are fabricated using such a method.Type: GrantFiled: January 10, 2018Date of Patent: March 15, 2022Assignee: SoitecInventors: Oleg Kononchuk, Didier Landru, Nadia Ben Mohamed
-
Publication number: 20220059370Abstract: A holding device for a fracturable assembly, which is intended to separate along a fracture plane defined between an upper part and a lower part of the fracturable assembly, comprises at least two protrusions configured to hold keep the fracturable assembly suspended in a substantially horizontal holding position, the protrusions being intended to be located between the upper part and the lower part, against a peripheral chamfer of the upper part; a support located below and at a distance from the, protrusions so as to gravitationally receive the lower part when the fracturable assembly is separated, and to keep it at a distance from the upper part held by the protrusions.Type: ApplicationFiled: February 26, 2020Publication date: February 24, 2022Inventors: Didier Landru, Oleg Kononchuk, Nadia Ben Mohamed
-
Patent number: 11239108Abstract: A process for producing a donor substrate for creating a three-dimensional integrated structure comprises the following steps: providing a semiconductor substrate comprising a surface layer, referred to as an active layer, and a layer comprising a plurality of cavities extending beneath the active layer, each cavity being separated from an adjacent cavity by a partition, forming an electronic device in a region of the active layer located plumb with a cavity, depositing a protective mask on the active layer so as to cover the electronic device while at the same time exposing a region of the active layer located plumb with each partition, and implanting atomic species through regions of the active layer exposed by the mask to form a weakened zone in each partition.Type: GrantFiled: March 22, 2019Date of Patent: February 1, 2022Assignee: SoitecInventors: Gweltaz Gaudin, Didier Landru, Bruno Ghyselen
-
Patent number: 11219851Abstract: A vertical furnace includes a chamber intended for receiving a loading column, an inlet channel for fresh gas, arranged at an upper end of the chamber, the loading column comprising an upper portion, and a central portion for supporting a plurality of substrates. The vertical furnace further comprises a trapping device made of at least one material suitable for trapping all or part of the contaminants present in the fresh gas. The trapping device includes a circular part arranged on the upper part of the loading column, the circular part comprising fins regularly distributed over an upper surface of the circular part in order to increase the contact surface of the trapping device with the fresh gas.Type: GrantFiled: September 21, 2017Date of Patent: January 11, 2022Assignee: SoitecInventors: Didier Landru, Oleg Kononchuk
-
Publication number: 20210202302Abstract: Substrates may include a useful layer affixed to a support substrate. A surface of the useful layer located on a side of the useful layer opposite the support substrate may include a first region and a second region. The first region may have a first surface roughness, may be located proximate to a geometric center of the surface, and may occupy a majority of an area the surface. The second region may have a second, higher surface roughness, may be located proximate to a periphery of the surface, and may occupy a minority of the area of the surface.Type: ApplicationFiled: March 2, 2021Publication date: July 1, 2021Inventors: Didier Landru, Nadia Ben Mohamed, Oleg Kononchuk, Frédéric Mazen, Damien Massy, Shay Reboh, François Rieutord
-
Publication number: 20210118717Abstract: The present disclosure relates to a method for mechanically separating layers, in particular in a double layer transfer process. The present disclosure relates more in particular to a method for mechanically separating layers, comprising the steps of providing a semiconductor compound comprising a layer of a handle substrate and an active layer with a front main side and a back main side opposite the front main side, wherein the layer of the handle substrate is attached to the front main side of the active layer, then providing a layer of a carrier substrate onto the back main side of the active layer, and then initiating mechanical separation of the layer of the handle substrate, wherein the layer of the handle substrate and the layer of the carrier substrate are provided with a substantially symmetrical mechanical structure.Type: ApplicationFiled: December 28, 2020Publication date: April 22, 2021Inventors: Marcel Broekaart, Ionut Radu, Didier Landru
-
Patent number: 10950491Abstract: A useful layer is layered onto a support by a method that includes the steps of forming an embrittlement plane by implanting light elements into a first substrate, so as to form a useful layer between such plane and one surface of the first substrate; applying the support onto the surface of the first substrate so as to form an assembly to be fractured; applying a heat treatment for embrittling the assembly to be fractured; and initiating and propagating a fracture wave into the first substrate along the embrittlement plane. The fracture wave is initiated in a central area of the embrittlement plane and the propagation speed of the wave is controlled so that the velocity thereof is sufficient to cause the interactions of the fracture wave with acoustic vibrations emitted upon the initiation and/or propagation thereof, if any, are confined to a peripheral area of the useful layer.Type: GrantFiled: August 1, 2017Date of Patent: March 16, 2021Assignees: Soitec, COMMISSARIAT Á L'ÈNERGIE ATOMIQUE ET AUX ÉNERGIES ALTERNATIVESInventors: Didier Landru, Nadia Ben Mohamed, Oleg Kononchuk, Frederic Mazen, Damien Massy, Shay Reboh, Francois Rieutord