Patents by Inventor Digh Hisamoto

Digh Hisamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150221664
    Abstract: A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
    Type: Application
    Filed: April 13, 2015
    Publication date: August 6, 2015
    Inventors: Digh HISAMOTO, Shinichiro KIMURA, Kan YASUI, Nozomu MATSUZAKI
  • Patent number: 9054174
    Abstract: In a MOSFET using a SiC substrate, a source region having low resistance and high injection efficiency is formed without performing a high-temperature heat treatment. A vertical Schottky barrier transistor in which a source region SR on a SiC epitaxial substrate is constituted by a metal material is formed. The source region SR composed of a metal material can be brought into a low resistance state without performing a high-temperature activation treatment. Further, by segregating a conductive impurity DP at an interface between the source region SR composed of a metal material and the SiC epitaxial substrate, the Schottky barrier height can be reduced, and the carrier injection efficiency from the source region SR can be improved.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: June 9, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Digh Hisamoto, Naoki Tega, Kumiko Konishi, Hiroyuki Matsushima
  • Publication number: 20150145023
    Abstract: To provide a semiconductor device having a nonvolatile memory improved in characteristics. In the semiconductor device, a nonvolatile memory has a high-k insulating film (high dielectric constant film) between a control gate electrode portion and a memory gate electrode portion and a transistor of a peripheral circuit region has a high-k/metal configuration. The high-k insulating film arranged between the control gate electrode portion and the memory gate electrode portion relaxes an electric field intensity at the end portion (corner portion) of the memory gate electrode portion on the side of the control gate electrode portion. This results in reduction in uneven distribution of charges in a charge accumulation portion (silicon nitride film) and improvement in erase accuracy.
    Type: Application
    Filed: November 20, 2014
    Publication date: May 28, 2015
    Inventors: Tsuyoshi Arigane, Daisuke Okada, Digh Hisamoto
  • Publication number: 20150137215
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Tsutomu OKAZAKI, Daisuke OKADA, Kyoya NITTA, Toshihiro TANAKA, Akira KATO, Toshikazu MATSUI, Yasushi ISHII, Digh HISAMOTO, Kan YASUI
  • Patent number: 9029979
    Abstract: A trench groove is formed and a silicon oxide film is buried in the periphery of a channel region of (0001) surface 4h-SiC semiconductor element. The oxide film in the trench groove is defined in such a planar layout that a tensile strain is applied along the direction of the c-axis and a compressive strain is applied along two or more of axes on a plane perpendicular to the c-axis. For example, trench grooves buried with an oxide film may be configured to such a layout that they are in a trigonal shape surrounding the channel, or are arranged symmetrically with respect to the channel as a center when arranged discretely.
    Type: Grant
    Filed: November 23, 2012
    Date of Patent: May 12, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Yoshimoto, Ryuta Tsuchiya, Naoki Tega, Digh Hisamoto, Yasuhiro Shimamoto, Yuki Mori
  • Patent number: 9012968
    Abstract: A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: April 21, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Digh Hisamoto, Shinichiro Kimura, Kan Yasui, Nozomu Matsuzaki
  • Patent number: 8963226
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: February 24, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Tsutomu Okazaki, Daisuke Okada, Kyoya Nitta, Toshihiro Tanaka, Akira Kato, Toshikazu Matsui, Yasushi Ishii, Digh Hisamoto, Kan Yasui
  • Publication number: 20140327066
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p|-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Itaru YANAGI, Toshiyuki MINE, Hirotaka HAMAMURA, Digh HISAMOTO, Yasuhiro SHIMAMOTO
  • Patent number: 8872193
    Abstract: The present invention provides a technique capable of realizing a silicon carbide semiconductor device having high performance and high reliability. By constituting a channel region by an n?-type, intrinsic, or p?-type channel region and a p+-type channel region, a high channel mobility and a high threshold voltage are realized. Further, by constituting a source region by an n+-type source region and an n++-type source region, and forming the n+-type source region between the p+-type channel region and the n++-type source region, an electric field in the p+-type channel region is relaxed to suppress deterioration of a gate insulating film, and also by electrically connecting a source wiring electrode to the n++-type source region, a contact resistance is decreased.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: October 28, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Naoki Tega, Digh Hisamoto, Takashi Takahama
  • Patent number: 8816426
    Abstract: In a non-volatile memory, writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film, which serves as a charge accumulation layer. The gate electrode of a memory cell has a laminated structure made of a plurality of polysilicon films with different impurity concentrations. In a two-layered structure the gate electrode has a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon. Holes are injected into the charge accumulation layer from the gate electrode.
    Type: Grant
    Filed: March 17, 2013
    Date of Patent: August 26, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Itaru Yanagi, Toshiyuki Mine, Hirotaka Hamamura, Digh Hisamoto, Yasuhiro Shimamoto
  • Patent number: 8679915
    Abstract: A method of manufacturing a non-volatile semiconductor memory device is provided which overcomes a problem of penetration of implanted ions due to the difference of an optimal gate height in simultaneous formation of a self-align split gate type memory cell utilizing a side wall structure and a scaled MOS transistor. A select gate electrode to form a side wall in a memory area is formed to be higher than that of the gate electrode in a logic area so that the height of the side wall gate electrode of the self-align split gate memory cell is greater than that of the gate electrode in the logic area. Height reduction for the gate electrode is performed in the logic area before gate electrode formation.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: March 25, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Kan Yasui, Digh Hisamoto, Tetsuya Ishimaru, Shin-ichiro Kimura
  • Publication number: 20140008716
    Abstract: When the width of an isolation region is reduced through the scaling of a memory cell to reduce the distance between the memory cell and an adjacent memory cell, the electrons or holes injected into the charge storage film of the memory cell are diffused into the portion of the charge storage film located over the isolation region to interfere with each other and possibly impair the reliability of the memory cell. In a semiconductor device, the charge storage film of the memory cell extends to the isolation region located between the adjacent memory cells. The effective length of the charge storage film in the isolation region is larger than the width of the isolation region. Here, the effective length indicates the length of the region of the charge storage film which is located over the isolation region and in which charges are not stored.
    Type: Application
    Filed: June 29, 2013
    Publication date: January 9, 2014
    Inventors: Tsuyoshi Arigane, Digh Hisamoto, Yutaka Okuyama, Takashi Hashimoto, Daisuke Okada
  • Publication number: 20130341729
    Abstract: Provided is a semiconductor element having, while maintaining the same integratability as a conventional MOSFET, excellent switch characteristics compared with the MOSFET, that is, having the S-value less than 60 mV/order at room temperature. Combining the MOSFET and a tunnel bipolar transistor having a tunnel junction configures a semiconductor element that shows an abrupt change in the drain current with respect to a change in the gate voltage (an S-value of less than 60 mV/order) even at a low voltage.
    Type: Application
    Filed: June 20, 2011
    Publication date: December 26, 2013
    Inventors: Digh Hisamoto, Shinichi Saito, Akio Shima, Hiroyuki Yoshimoto
  • Publication number: 20130334592
    Abstract: A semiconductor memory array includes a first nonvolatile memory cell having a first charge storage layer and a first gate electrode and a second nonvolatile memory cell, adjacent to the first memory cell in a first direction, having a second charge storage layer and a second gate electrode. The first and second electrodes extend in a second direction perpendicular to the first direction, the first electrode has a first contact section extending toward the second electrode in the first direction, and the second electrode has a second contact section extending toward the first electrode in the first direction. The first and second contact positions are shifted in the second direction, respectively, and the first electrode and the first contact section are electrically separated from the second electrode and the second contact section.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 19, 2013
    Applicant: Renesas Electronics Corporation
    Inventors: Tsutomu OKAZAKI, Daisuke OKADA, Kyoya NITTA, Toshihiro TANAKA, Akira KATO, Toshikazu MATSUI, Yasushi ISHII, Digh HISAMOTO, Kan YASUI
  • Publication number: 20130328062
    Abstract: In a MOSFET using a SiC substrate, a source region having low resistance and high injection efficiency is formed without performing a high-temperature heat treatment. A vertical Schottky barrier transistor in which a source region SR on a SiC epitaxial substrate is constituted by a metal material is formed. The source region SR composed of a metal material can be brought into a low resistance state without performing a high-temperature activation treatment. Further, by segregating a conductive impurity DP at an interface between the source region SR composed of a metal material and the SiC epitaxial substrate, the Schottky barrier height can be reduced, and the carrier injection efficiency from the source region SR can be improved.
    Type: Application
    Filed: June 7, 2013
    Publication date: December 12, 2013
    Inventors: Digh Hisamoto, Naoki Tega, Kumiko Konishi, Hiroyuki Matsushima
  • Publication number: 20130299849
    Abstract: The present invention provides a technique capable of realizing a silicon carbide semiconductor device having high performance and high reliability. By constituting a channel region by an n?-type, intrinsic, or p?-type channel region and a p+-type channel region, a high channel mobility and a high threshold voltage are realized. Further, by constituting a source region by an n+-type source region and an n++-type source region, and forming the n+-type source region between the p+-type channel region and the n++-type source region, an electric field in the p+-type channel region is relaxed to suppress deterioration of a gate insulating film, and also by electrically connecting a source wiring electrode to the n++-type source region, a contact resistance is decreased.
    Type: Application
    Filed: May 9, 2013
    Publication date: November 14, 2013
    Inventors: Naoki Tega, Digh Hisamoto, Takashi Takahama
  • Publication number: 20130234236
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Application
    Filed: March 17, 2013
    Publication date: September 12, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Itaru YANAGI, Toshiyuki MINE, Hirotaka HAMAMURA, Digh HISAMOTO, Yasuhiro SHIMAMOTO
  • Publication number: 20130228845
    Abstract: A non-volatile semiconductor memory device with good write/erase characteristics is provided. A selection gate is formed on a p-type well of a semiconductor substrate via a gate insulator, and a memory gate is formed on the p-type well via a laminated film composed of a silicon oxide film, a silicon nitride film, and a silicon oxide film. The memory gate is adjacent to the selection gate via the laminated film. In the regions on both sides of the selection gate and the memory gate in the p-type well, n-type impurity diffusion layers serving as the source and drain are formed. The region controlled by the selection gate and the region controlled by the memory gate located in the channel region between said impurity diffusion layers have the different charge densities of the impurity from each other.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Digh HISAMOTO, Shinichiro KIMURA, Kan YASUI, Nozomu MATSUZAKI
  • Patent number: 8472258
    Abstract: An operation scheme for operating stably a semiconductor nonvolatile memory device is provided. When hot-hole injection is conducted in the semiconductor nonvolatile memory device of a split gate structure, the hot-hole injection is verified using a crossing point that does not change with time. Thus, an erased state can be verified without being aware of any time-varying changes. Also, programming or programming/erasure is conducted by repeating pulse voltage or multi-step voltage application to a gate section multiple times.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: June 25, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Digh Hisamoto, Kan Yasui, Tetsuya Ishimaru, Shinichiro Kimura, Daisuke Okada
  • Patent number: 8436333
    Abstract: A light-emitting device according to the present invention includes a first electrode unit for injecting an electron, a second electrode unit for injecting a hole, and light-emitting units and electrically connected to the first electrode unit and the second electrode unit respectively, wherein the light-emitting units and are formed of single-crystal silicon, the light-emitting units and having a first surface (topside surface) and a second surface (underside surface) opposed to the first surface, plane orientation of the first and second surfaces being set to a (100) plane, thicknesses of the light-emitting units and in a direction orthogonal to the first and second surfaces being made extremely thin.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: May 7, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Shinichi Saito, Digh Hisamoto, Tadashi Arai, Takahiro Onai