Patents by Inventor Dimitri Shishkin

Dimitri Shishkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11517948
    Abstract: One embodiment provides a rinse basin and blower system configured to clean a pipette including: a rinse basin comprising: a hollow tube enclosed at one end; wherein the hollow tube comprises an upper port and a lower port; and the lower port being tapered toward the hollow tube; and wherein the rinse basin is connected to a blower system; the blower system comprising: a waste reservoir that receives, from the rinse basin, a waste product comprising: air and liquid, wherein the waste reservoir separates the liquid from the air; a dryer that receives the air from the waste reservoir and further separates any remaining liquid from the air; and a blower that receives the air from the dryer and exhausts the air.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 6, 2022
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Viatcheslav Pronkine, Dimitri Shishkin, Shriram Patel
  • Patent number: 11402369
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 2, 2022
    Assignee: INSTRUMENTATION LABORATORY COMPANY
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Jr., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Patent number: 10994277
    Abstract: An environmental control system for use in a clinical analyzer module includes an upper deck environmental subsystem comprising a far field sensor, one or more heaters, one or more spine cooling fans, and one or more in-line fluid heat exchangers. The far field sensor is configured to acquire measurements of ambient temperature in the upper deck environmental subsystem. The heaters are configured to generate hot airflow based on the measurements of ambient temperature from the far field sensor. The spine cooling fans are configured to operate in a manner that mixes the hot airflow from the heaters with cool airflow based on the measurements of ambient temperature from the far field sensor. The in-line fluid heat exchangers are configured to heat fluids used in reactions performed on the clinical analyzer module to a constant temperature.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: May 4, 2021
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Michael Starr, Dimitri Shishkin, Shriram Patel, Beri Cohen, William Carpenter
  • Publication number: 20200200731
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, JR., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Patent number: 10578605
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: March 3, 2020
    Assignee: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Jr., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Publication number: 20190283030
    Abstract: An environmental control system for use in a clinical analyzer module includes an upper deck environmental subsystem comprising a far field sensor, one or more heaters, one or more spine cooling fans, and one or more in-line fluid heat exchangers. The far field sensor is configured to acquire measurements of ambient temperature in the upper deck environmental subsystem. The heaters are configured to generate hot airflow based on the measurements of ambient temperature from the far field sensor. The spine cooling fans are configured to operate in a manner that mixes the hot airflow from the heaters with cool airflow based on the measurements of ambient temperature from the far field sensor. The in-line fluid heat exchangers are configured to heat fluids used in reactions performed on the clinical analyzer module to a constant temperature.
    Type: Application
    Filed: July 19, 2017
    Publication date: September 19, 2019
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Michael Starr, Dimitri Shishkin, Shriram Patel, Beri Cohen, William Carpenter
  • Publication number: 20190275570
    Abstract: One embodiment provides a rinse basin and blower system configured to clean a pipette including: a rinse basin comprising: a hollow tube enclosed at one end; wherein the hollow tube comprises an upper port and a lower port; and the lower port being tapered toward the hollow tube; and wherein the rinse basin is connected to a blower system; the blower system comprising: a waste reservoir that receives, from the rinse basin, a waste product comprising: air and liquid, wherein the waste reservoir separates the liquid from the air; a dryer that receives the air from the waste reservoir and further separates any remaining liquid from the air; and a blower that receives the air from the dryer and exhausts the air.
    Type: Application
    Filed: July 19, 2017
    Publication date: September 12, 2019
    Applicant: Siemens Healthcare Diagnostics Inc.
    Inventors: Viatcheslav Pronkine, Dimitri Shishkin, Shriram Patel
  • Publication number: 20190107529
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Application
    Filed: December 5, 2018
    Publication date: April 11, 2019
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, JR., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Patent number: 10180419
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Grant
    Filed: August 5, 2013
    Date of Patent: January 15, 2019
    Assignee: Instrumentation Laboratory Company
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Jr., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Publication number: 20140161668
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Application
    Filed: August 5, 2013
    Publication date: June 12, 2014
    Applicant: International Technidyne Corporation
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, Dimitri Shishkin, Maria Figueroa, James A. Mawhirt
  • Publication number: 20130017126
    Abstract: An apparatus for measuring blood clotting time includes a blood clot detection instrument and a cuvette for use with the blood clot detection instrument. The cuvette includes a blood sample receptor-inlet; a channel arrangement including at least one test channel for performing a blood clotting time measurement, a sampling channel having at least one surface portion that is hydrophilic, communicating with the blood sample receptor-inlet and the at least one test channel, and a waste channel having at least one surface portion that is hydrophilic, communicating with the sampling channel; and a vent opening communicating with the sampling channel. The sampling channel, the vent opening and the waste channel, coact to automatically draw a requisite volume of a blood sample deposited at the blood receptor-inlet, into the sampling channel.
    Type: Application
    Filed: May 17, 2012
    Publication date: January 17, 2013
    Applicant: INTERNATIONAL TECHNIDYNE CORPORATION
    Inventors: Gregory M. Colella, Henry D. Huang, Anthony F. Kuklo, JR., Dimitri Shishkin, Maria Figueroa, James A. Mawhirt