Patents by Inventor Don H. Tran

Don H. Tran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10512504
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: December 24, 2019
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 10485435
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device, the kit comprising an outer sheath, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with a tapered distal end. The inner sheath is slidable within the inner lumen of the outer sheath and is selectably removable from the inner lumen of the outer sheath by sliding the inner sheath out of the proximal opening of the outer sheath. The kit includes an elongated deployment receptacle including a deployment bay slidable within the inner lumen of the outer sheath when the inner sheath is not within the inner lumen of the outer sheath. The deployment bay carries an implantable medical device through the inner lumen of the outer sheath and facilitates deployment of the implantable medical device from the distal end of the outer sheath.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 26, 2019
    Assignee: Medtronic, Inc.
    Inventors: Erik C. Griswold, James Calvin Allan, Rudolph A. Beasley, William J. Havel, Jon D. Schell, Don H. Tran, Steven L. Waldhauser
  • Patent number: 10124175
    Abstract: An inner subassembly of a delivery system assembly extends within a lumen of an elongate outer tube of the assembly, and includes a flared distal end, which is preferably configured to conform to a proximal end of an implantable medical device; a distal-most portion of the outer tube is sized to contain both the flared distal end and an entirety of the medical device. The inner subassembly includes a core, an elongate pull-wire, extending along the core, and a sheath surrounding the pull-wire and the core; the sheath includes a slot opening that allows the pull-wire to pass laterally therethrough. The assembly preferably has a pre-formed curvature along a length of the sheath, and the slot opening extends along the pre-formed curvature. The outer tube is longitudinally moveable relative to the inner subassembly, for example, to deploy the medical device.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: November 13, 2018
    Assignee: Medtronic, Inc.
    Inventors: William A Berthiaume, H Allan Steingisser, Don H Tran, Erik Griswold, Brent L Locsin, James C Allan
  • Publication number: 20180085162
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Application
    Filed: November 29, 2017
    Publication date: March 29, 2018
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 9867982
    Abstract: A delivery system assembly includes an elongate outer tube, an elongate inner member extending within a lumen of the outer tube, and an articulation sheath surrounding the outer tube between a handle of the assembly and a distal-most portion of the outer tube. The outer tube is longitudinally moveable within the sheath; and an inner diameter of the sheath is preferably smaller than that of the handle and the distal-most portion of the outer tube. Navigation of the assembly through a venous system, for deployment of an implantable medical device, is facilitated by deflection of the sheath, to orient a distal-most portion of the outer tube, within which an entirety of the medical device is contained/loaded, and by subsequent advancement of the distal-most portion, with respect to the sheath, to move the distal end of the inner member, along with the contained/loaded device into proximity with a target implant site.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 16, 2018
    Assignee: Medtronic, Inc.
    Inventors: William A Berthiaume, H Allan Steingisser, Don H Tran, Erik Griswold, Brent L Locsin
  • Patent number: 9861815
    Abstract: A tether subassembly, which may be employed by a tool that deploys an implantable medical device, includes a test segment for verification of adequate fixation of the device at an implant site. When the device is located in proximity to a distal opening of the tube, a tether first length extends through an attachment structure of the device and within an elongate tube of the tool, a tether second length extends alongside the tether first length within the tube, and the test segment is located in proximity to the distal opening. The test segment is configured so that only a tug force, applied to the tether first length, and greater than or equal to a predetermined force, can pull the test segment through an aperture, either of the delivery tool or of the device. The predetermined force corresponds to a minimum adequate fixation force for the device.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: January 9, 2018
    Assignee: Medtronic, Inc.
    Inventors: Don H Tran, Brent L Locsin, William A Berthiaume, Maria E Valdovinos, H. Allan Steingisser, Erik Griswold
  • Patent number: 9855096
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 2, 2018
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 9854982
    Abstract: In one example, this disclosure is directed to a method for intravascular implantation of an implantable medical device comprising positioning a distal end of an elongated outer sheath forming an inner lumen adjacent a target site within a vasculature of a patient, and partially deploying an implantable medical device from the distal opening, wherein the implantable medical device includes an expandable fixation element. A portion of the expandable fixation element assumes an expanded position when the implantable medical device is partially deployed from the distal opening. The method including advancing the distal end of the outer sheath within the vasculature with the implantable medical device partially deployed from the distal opening, and monitoring at least one of the vasculature and the portion of the expandable fixation element for deflection to determine when the size of the portion of the expandable fixation element corresponds to the size of the vasculature.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: January 2, 2018
    Assignee: Medtronic, Inc.
    Inventors: James Calvin Allan, Erik C. Griswold, William J. Havel, Steven L. Waldhauser, Kelly M. Wien, Kendra Yasger, Rudolph A. Beasley, Jon D. Schell, Don H. Tran
  • Patent number: 9808629
    Abstract: A delivery system assembly includes an outer tube, an inner member, extending within a lumen of the outer tube, and a deflectable shaft, extending within the outer tube lumen and around the inner member; the tube and inner member are longitudinally moveable with respect to the shaft, and a distal end of the inner member is located distal to the shaft within the tube lumen. A medical device can be loaded into the tube lumen, along a distal-most portion of the tube, and contained between the inner member and a distal opening of the tube lumen. Deflecting the shaft orients the distal-most portion for navigation of the assembly, and, when the distal end of the inner member is engaged within the tube lumen, distal movement of the tube, with respect to the shaft, causes similar distal movement of the inner member and the loaded medical device toward an implant site.
    Type: Grant
    Filed: February 2, 2015
    Date of Patent: November 7, 2017
    Assignee: Medtronic, Inc.
    Inventors: H. Allan Steingisser, Don H. Tran, William A. Berthiaume, Brent L. Locsin
  • Patent number: 9717421
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device within a patient, the kit comprising an elongated outer sheath forming an inner lumen with a distal opening, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with an enlarged distal portion, wherein the enlarged distal portion is configured to substantially fill the inner lumen and close-off the distal opening of the outer sheath. The enlarged distal portion is slidable relative to the outer sheath. The inner sheath further includes a tether with a helical element that is remotely controllable from a proximal end of the inner sheath to release the implantable medical device from a distal portion of the outer sheath.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: August 1, 2017
    Assignee: Medtronic, Inc.
    Inventors: Erik C. Griswold, James Calvin Allan, Rudolph A. Beasley, William Berthiaume, Arvind K. Srinivas, Don H. Tran, Suruchi Anand, Martha A. Barajas-Torres, Matthew S. Poole, Steven L. Waldhauser
  • Publication number: 20170049512
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Application
    Filed: August 26, 2016
    Publication date: February 23, 2017
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 9452017
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: September 27, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 9283382
    Abstract: A tool of an interventional medical systems system includes a core configured to be temporarily attached to the implantable medical device, as the tool deploys the device to expose a fixation member of the device for engagement with tissue at a target implant site; the core is then employed to verify adequate fixation of the deployed device via a tug test. An operator determines that the device is adequately fixed by the engaged fixation member, if a tug force that is applied to the core modifies the temporary attachment between the core and the device, to allow release of the device from the temporary attachment. A tether, which is fixedly attached to the core, may be employed to create the temporary attachment between the core and the device, or the temporary attachment may be created by a snap fit formed between the core and the attachment structure of the device.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: March 15, 2016
    Assignee: Medtronic, Inc.
    Inventors: William A. Berthiaume, Don H. Tran, Brent L. Locsin, Maria E. Valdovinos, H. Allan Steingisser, Erik Griswold
  • Publication number: 20160067503
    Abstract: An inner subassembly of a delivery system assembly extends within a lumen of an elongate outer tube of the assembly, and includes a flared distal end, which is preferably configured to conform to a proximal end of an implantable medical device; a distal-most portion of the outer tube is sized to contain both the flared distal end and an entirety of the medical device. The inner subassembly includes a core, an elongate pull-wire, extending along the core, and a sheath surrounding the pull-wire and the core; the sheath includes a slot opening that allows the pull-wire to pass laterally therethrough. The assembly preferably has a pre-formed curvature along a length of the sheath, and the slot opening extends along the pre-formed curvature. The outer tube is longitudinally moveable relative to the inner subassembly, for example, to deploy the medical device.
    Type: Application
    Filed: November 17, 2015
    Publication date: March 10, 2016
    Inventors: William A. Berthiaume, H Allan Steingisser, Don H. Tran, Erik Griswold, Brent L. Locsin, James C. Allan
  • Publication number: 20160066988
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Application
    Filed: August 12, 2015
    Publication date: March 10, 2016
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Patent number: 9216293
    Abstract: An inner subassembly of a delivery system assembly extends within a lumen of an elongate outer tube of the assembly, and includes a flared distal end, which is preferably configured to conform to a proximal end of an implantable medical device; a distal-most portion of the outer tube is sized to contain both the flared distal end and an entirety of the medical device. The inner subassembly includes a core, an elongate pull-wire, extending along the core, and a sheath surrounding the pull-wire and the core; the sheath includes a slot opening that allows the pull-wire to pass laterally therethrough. The assembly preferably has a pre-formed curvature along a length of the sheath, and the slot opening extends along the pre-formed curvature. The outer tube is longitudinally moveable relative to the inner subassembly, for example, to deploy the medical device.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: December 22, 2015
    Assignee: Medtronic, Inc.
    Inventors: William A. Berthiaume, H. Allan Steingisser, Don H. Tran, Erik Griswold, Brent L. Locsin, James C. Allan
  • Publication number: 20150273207
    Abstract: A tether subassembly, which may be employed by a tool that deploys an implantable medical device, includes a test segment for verification of adequate fixation of the device at an implant site. When the device is located in proximity to a distal opening of the tube, a tether first length extends through an attachment structure of the device and within an elongate tube of the tool, a tether second length extends alongside the tether first length within the tube, and the test segment is located in proximity to the distal opening. The test segment is configured so that only a tug force, applied to the tether first length, and greater than or equal to a predetermined force, can pull the test segment through an aperture, either of the delivery tool or of the device. The predetermined force corresponds to a minimum adequate fixation force for the device.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: Don H. Tran, Brent L. Locsin, William A. Berthiaume, Maria E. Valdovinos, H. Allan Steingisser, Erik Griswold
  • Publication number: 20150273212
    Abstract: A tool of an interventional medical systems system includes a core configured to be temporarily attached to the implantable medical device, as the tool deploys the device to expose a fixation member of the device for engagement with tissue at a target implant site; the core is then employed to verify adequate fixation of the deployed device via a tug test. An operator determines that the device is adequately fixed by the engaged fixation member, if a tug force that is applied to the core modifies the temporary attachment between the core and the device, to allow release of the device from the temporary attachment. A tether, which is fixedly attached to the core, may be employed to create the temporary attachment between the core and the device, or the temporary attachment may be created by a snap fit formed between the core and the attachment structure of the device.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Inventors: William A. Berthiaume, Don H. Tran, Brent L. Locsin, Maria E. Valdovinos, H. Allan Steingisser, Erik Griswold
  • Patent number: 9138292
    Abstract: Catheter apparatuses, systems, and methods for achieving renal neuromodulation by intravascular access are disclosed herein. One aspect of the present technology, for example, is directed to a treatment device having a multi-electrode array configured to be delivered to a renal blood vessel. The array is selectively transformable between a delivery or low-profile state (e.g., a generally straight shape) and a deployed state (e.g., a radially expanded, generally spiral/helical shape). The multi-electrode array is sized and shaped so that the electrodes or energy delivery elements contact an interior wall of the renal blood vessel when the array is in the deployed (e.g., spiral/helical) state. The electrodes or energy delivery elements are configured for direct and/or indirect application of thermal and/or electrical energy to heat or otherwise electrically modulate neural fibers that contribute to renal function.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: September 22, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: William W. Chang, Justin Goshgarian, Kevin Michael Mauch, Leonila Rivera, Sukyoung Shin, Don H. Tran
  • Publication number: 20150148815
    Abstract: A delivery system assembly includes an outer tube, an inner member, extending within a lumen of the outer tube, and a deflectable shaft, extending within the outer tube lumen and around the inner member; the tube and inner member are longitudinally moveable with respect to the shaft, and a distal end of the inner member is located distal to the shaft within the tube lumen. A medical device can be loaded into the tube lumen, along a distal-most portion of the tube, and contained between the inner member and a distal opening of the tube lumen. Deflecting the shaft orients the distal-most portion for navigation of the assembly, and, when the distal end of the inner member is engaged within the tube lumen, distal movement of the tube, with respect to the shaft, causes similar distal movement of the inner member and the loaded medical device toward an implant site.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Inventors: H. Allan Steingisser, Don H. Tran, William A. Berthiaume, Brent L. Locsin