Patents by Inventor Donald J. Delzer

Donald J. Delzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9291658
    Abstract: A device can include a radio frequency (RF) signal input, a local oscillator (LO) signal input, a mixer to receive the RF signal and LO signal and translate a frequency of the RF signal based on the LO signal, a strobe pulsing component to provide a timed strobe pulse, and a second mixer to receive a leakage signal, LO signal, and timed strobe pulse, and also to translate a frequency of the leakage signal to baseband. The device can also include a coupling component configured to allow the leakage signal to pass between the mixers. An output signal output can provide a measured value of the leakage signal.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: March 22, 2016
    Assignee: TEKTRONIX, INC.
    Inventors: Donald J. Delzer, Gordon Alan Olsen
  • Publication number: 20140239978
    Abstract: A device can include a radio frequency (RF) signal input, a local oscillator (LO) signal input, a mixer to receive the RF signal and LO signal and translate a frequency of the RF signal based on the LO signal, a strobe pulsing component to provide a timed strobe pulse, and a second mixer to receive a leakage signal, LO signal, and timed strobe pulse, and also to translate a frequency of the leakage signal to baseband. The device can also include a coupling component configured to allow the leakage signal to pass between the mixers. An output signal output can provide a measured value of the leakage signal.
    Type: Application
    Filed: February 22, 2013
    Publication date: August 28, 2014
    Applicant: Tektronix, Inc.
    Inventors: Donald J. Delzer, Gordon Alan Olsen
  • Patent number: 8552808
    Abstract: Embodiments of the present invention provide an oscillator having circuitry that measures the power dissipated in a resonator and circuitry that controls the power delivered to the resonator in response to the measured power. In some embodiments, the circuitry that measures the power dissipated in the resonator comprises circuitry that measures the voltage across the resonator, circuitry that measures the current through the resonator, and circuitry that calculates the power dissipated in the resonator based on the measured voltage and current.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: October 8, 2013
    Assignee: Tektronix, Inc.
    Inventors: Donald J. Delzer, Laszlo J. Dobos
  • Publication number: 20120306583
    Abstract: Embodiments of the present invention provide an oscillator having circuitry that measures the power dissipated in a resonator and circuitry that controls the power delivered to the resonator in response to the measured power. In some embodiments, the circuitry that measures the power dissipated in the resonator comprises circuitry that measures the voltage across the resonator, circuitry that measures the current through the resonator, and circuitry that calculates the power dissipated in the resonator based on the measured voltage and current.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Applicant: TEKTRONIX, INC
    Inventors: DONALD J. DELZER, LASZLO J. DOBOS
  • Patent number: 7388441
    Abstract: A robust phase-lock detector for a phase-locked loop examines both the sum frequency and baseband components of an error signal from the phase-locked loop to determine that both a reference signal and an output signal for the phase-locked loop are present and that the reference and output signals have a desired phase relationship. An IF detector selects the sum frequency component, which is the sum of the reference frequency and a subdivided frequency from the output signal, and detects its presence. A baseband detector selects the baseband component and detects whether the baseband component is approximately zero volts. The outputs from the IF detector and the baseband detector are combined to produce a lock signal, indicating that the phase-locked loop is locked, i.e., the reference and output signals are present and have the desired phase relationship with respect to each other.
    Type: Grant
    Filed: May 23, 2006
    Date of Patent: June 17, 2008
    Assignee: Tektronix. Inc.
    Inventor: Donald J. Delzer
  • Publication number: 20070285182
    Abstract: A robust phase-lock detector for a phase-locked loop examines both the sum frequency and baseband components of an error signal from the phase-locked loop to determine that both a reference signal and an output signal for the phase-locked loop are present and that the reference and output signals have a desired phase relationship. An IF detector selects the sum frequency component, which is the sum of the reference frequency and a subdivided frequency from the output signal, and detects its presence. A baseband detector selects the baseband component and detects whether the baseband component is approximately zero volts. The outputs from the IF detector and the baseband detector are combined to produce a lock signal, indicating that the phase-locked loop is locked, i.e., the reference and output signals are present and have the desired phase relationship with respect to each other.
    Type: Application
    Filed: May 23, 2006
    Publication date: December 13, 2007
    Inventor: Donald J. Delzer
  • Patent number: 7158901
    Abstract: An FFT accelerated display mode for a spectrum analyzer processes time domain samples in increments as they are received until a complete measurement frame of samples is processed to provide a desired frequency resolution. After a first set of time domain samples is received, a spectrum analysis display is provided having a coarse frequency resolution. Then the spectrum analysis display is updated at intervals as more and more time domain samples are received until the complete measurement frame is processed, providing the desired frequency resolution for the spectrum analysis display.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: January 2, 2007
    Assignee: Tektronix, Inc.
    Inventor: Donald J. Delzer
  • Patent number: 6734757
    Abstract: An adjustable delay line phase shifter is configured as a microstrip transmission line having a M×N matrix of conductive elements mounted on a insulating substrate. The squares are connected together using conductive members, such as gold ribbon or wire bonds, in a pattern that produces a desired amount of phase shift.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: May 11, 2004
    Assignee: Tektronix, Inc.
    Inventor: Donald J. Delzer
  • Publication number: 20030085775
    Abstract: An adjustable delay line phase shifter is configured as a microstrip transmission line having a M×N matrix of conductive elements mounted on a insulating substrate. The squares are connected together using conductive members, such as gold ribbon or wire bonds in a pattern that produces a desired amount of phase shift.
    Type: Application
    Filed: April 26, 2000
    Publication date: May 8, 2003
    Inventor: Donald J. Delzer
  • Patent number: 6369659
    Abstract: A clock recovery system includes a source of a data signal, and a free-running frequency adjustment circuit. The free-running frequency adjustment circuit includes an injection-locked oscillator having a free-running frequency and generating a clock signal and a phase locked loop, coupled in parallel with the injection locked oscillator, and generating a control signal adjusting the free running frequency of the injection locked oscillator.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: April 9, 2002
    Assignee: Tektronix, Inc.
    Inventors: Donald J. Delzer, Dan H. Wolaver
  • Patent number: 6229412
    Abstract: A PIN diode switch reduces energy loss and stray capacitance by providing first and second series connected PIN diodes between first and second biasing sources. A third biasing source is coupled to the common node between the two PIN diodes via a first resistive element. A second resistive element is coupled between the PIN diodes and the second biasing source. An electronic switch couples a negative voltage source via a current generating means to bias the PIN diodes to a conductive ON state. AC current is coupled to ground in the ON state via a dual path circuit that includes one of the PIN diodes and a low loss capacitive element connected to the PIN diode and second resistive element node in one path and the other PIN diode and the biasing source to ground in the other path. In the OFF state the biasing sources provide reverse bias voltages for minimizing the reverse capacitance of the PIN diodes and are connected in a way that minimizes stray capacitance that is connected to the switched element.
    Type: Grant
    Filed: March 31, 1999
    Date of Patent: May 8, 2001
    Assignee: Tektronix, Inc.
    Inventor: Donald J. Delzer