Patents by Inventor Donald L. Hopper

Donald L. Hopper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11285326
    Abstract: Systems and methods for rate-adaptive pacing are disclosed. In one illustrative embodiment, a medical device for delivering electrical stimulation to a heart may include a housing configured to be implanted on the heart or within a chamber of the heart, one or more electrodes connected to the housing, and a controller disposed within the housing. The controller may be configured to sense a first signal and determine a respiration rate based at least in part on the sensed first signal. In at least some embodiments, the controller may be further configured to adjust a rate of delivery of electrical stimulation by the medical device based at least in part on the determined respiration rate.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: March 29, 2022
    Assignee: CARDIAC PACEMAKERS, INC.
    Inventors: Allan C. Shuros, Rodney W. Salo, Michael J. Kane, Donald L. Hopper
  • Publication number: 20210260380
    Abstract: Methods, systems, and devices that are used for improving cardiac resynchronization therapy (CRT) are described herein. Such a method can include, for each set of pacing parameters, of a plurality of sets of pacing parameters, performing CRT using a set of pacing parameters and simultaneously therewith sensing a plurality of intracardiac electrograms (IEGMs) using different combinations of implanted electrodes. Additionally, for each set of pacing parameters, of the plurality of sets of pacing parameters, the method includes producing a respective reconstructed multi-lead surface electrocardiogram (ECG) based on the plurality of IEGMs that were sensed while CRT was performed using the set of pacing parameters. The method also includes analyzing the reconstructed multi-lead surface ECGs that were produced for the plurality of sets of pacing parameters, and based on results thereof, identifying a set of pacing parameters to be use for further CRT.
    Type: Application
    Filed: February 2, 2021
    Publication date: August 26, 2021
    Applicant: Pacesetter, Inc.
    Inventors: Donald L. Hopper, Luke C. McSpadden, Louis-Philippe Richer, Jan Mangual, Nima Badie, Chunlan Jiang
  • Patent number: 10173067
    Abstract: An implantable pacing device for delivering ventricular pacing may be configured to intermittently and variably reduce the AV delay interval used in an atrial triggered pacing mode in a manner that simulates exercise. The device may be programmed to intermittently switch to and from a variably shortened AV delay mode according to defined entry and exit conditions.
    Type: Grant
    Filed: February 11, 2015
    Date of Patent: January 8, 2019
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Donald L. Hopper, Shantha Arcot-Krishnamurthy
  • Publication number: 20160256694
    Abstract: Systems and methods for rate-adaptive pacing are disclosed. In one illustrative embodiment, a medical device for delivering electrical stimulation to a heart may include a housing configured to be implanted on the heart or within a chamber of the heart, one or more electrodes connected to the housing, and a controller disposed within the housing. The controller may be configured to sense a first signal and determine a respiration rate based at least in part on the sensed first signal. In at least some embodiments, the controller may be further configured to adjust a rate of delivery of electrical stimulation by the medical device based at least in part on the determined respiration rate.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 8, 2016
    Inventors: Allan C. Shuros, Rodney W. Salo, Michael J. Kane, Donald L. Hopper
  • Patent number: 9277885
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: March 8, 2016
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 9132275
    Abstract: An apparatus comprises an implantable cardiac signal sensing circuit that provides an electrical cardiac signal representative of cardiac activity of a subject, an implantable therapy circuit that delivers electrical pacing stimulation energy to a heart of a subject, and a controller circuit. The controller circuit includes a chronotropic incompetence detection circuit that initiates pacing of an atrium of the subject at a rate higher than a device-indicated rate or a sensed intrinsic rate, monitor the AV interval, initiates an increase in the pacing rate while continuing the monitoring of the AV interval, calculates a change in AV intervals between a highest paced rate used in the monitoring and a lowest paced rate used in the monitoring, and indicates that the AV intervals are evidence of chronotropic incompetence when the calculated change in the AV intervals exceeds a specified threshold AV interval change value.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: September 15, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yinghong Yu, Donald L. Hopper, Jiang Ding, James O. Gilkerson
  • Publication number: 20150164421
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Application
    Filed: February 9, 2015
    Publication date: June 18, 2015
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Publication number: 20150151127
    Abstract: An implantable pacing device for delivering ventricular pacing may be configured to intermittently and variably reduce the AV delay interval used in an atrial triggered pacing mode in a manner that simulates exercise. The device may be programmed to intermittently switch to and from a variably shortened AV delay mode according to defined entry and exit conditions.
    Type: Application
    Filed: February 11, 2015
    Publication date: June 4, 2015
    Inventors: Allan Charles Shuros, Donald L. Hopper, Shantha Arcot-Krishnamurthy
  • Patent number: 8972007
    Abstract: An implantable pacing device for delivering ventricular pacing may be configured to intermittently and variably reduce the AV delay interval used in an atrial triggered pacing mode in a manner that simulates exercise. The device may be programmed to intermittently switch to and from a variably shortened AV delay mode according to defined entry and exit conditions.
    Type: Grant
    Filed: September 25, 2007
    Date of Patent: March 3, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan C. Shuros, Donald L. Hopper, Shantha Arcot-Krishnamurthy
  • Patent number: 8954146
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: February 10, 2015
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8914107
    Abstract: A cardiac rhythm management (CRM) device can extract ventilation information from thoracic impedance or other information, and adjust a delivery rate of the CRM therapy. A tidal volume of a patient is measured and used to adjust a ventilation rate response factor. The measured tidal volume can optionally be adjusted using a ventilation rate dependent adjustment factor. The ventilation rate response factor can also be adjusted using a maximum voluntary ventilation (MVV), an age predicted maximum heart rate, a resting heart rate, and a resting ventilation determined for the patient. In various examples, a global ventilation sensor rate response factor (for a population) can be programmed into the CRM device, and automatically tailored to be appropriate for a particular patient.
    Type: Grant
    Filed: May 20, 2010
    Date of Patent: December 16, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Paul F. Emerson, Gary T. Seim, Michael A. Querimit, Donald L. Hopper, Stephen R. Pitzl, Daniel O'Brien
  • Patent number: 8903491
    Abstract: An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's minute ventilation response. Such evaluation may be performed by computing a minute ventilation response slope, defined as the ratio of an incremental change in minute ventilation to an incremental change in measured activity level. The minute ventilation response slope may then be compared with a normal range to assess the patient's functional status.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: December 2, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, Bruce Wilkoff, Richard Morris
  • Patent number: 8831714
    Abstract: An indication of an actual or potential heart failure condition is computed. One example includes monitoring a first heart rate preceding a first onset of a first sinus tachyarrhythmia episode. Upon detecting the first sinus tachyarrhythmia episode, the indication is automatically provided using information about the first heart rate and how quickly the first onset occurs.
    Type: Grant
    Filed: May 7, 2007
    Date of Patent: September 9, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yayun Lin, Shelley M. Cazares, Donald L. Hopper
  • Publication number: 20140221853
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Application
    Filed: April 16, 2014
    Publication date: August 7, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8761879
    Abstract: Methods and systems to modulate timing intervals for pacing therapy are described. For each cardiac cycle, one or both of an atrioventricular (A-V) timing interval and an atrial (A-A) timing interval are modulated to oppose beat-to-beat ventricular (V-V) timing variability. Pacing therapy is delivered using the modulated timing intervals.
    Type: Grant
    Filed: June 11, 2013
    Date of Patent: June 24, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, Yinghong Yu, Allan C. Shuros, Shantha Arcot-Krishnamurthy, Gerrard M. Carlson, Jeffrey E. Stahmann
  • Patent number: 8750992
    Abstract: Cardiac monitoring and/or stimulation methods and systems employing dyspnea measurement. An implantable cardiac device may sense transthoracic impedance and determine a patient activity level. An index indicative of pulmonary function is implantably computed to detect an episode of dyspnea based on a change, trend, and/or value exceeding a threshold at a determined patient activity level. Trending one or more pulmonary function index values may be done to determine a patient's pulmonary function index profile, which may be used to adapt a cardiac therapy. A physician may be automatically alerted in response to a pulmonary function index value and/or a trend of the patient's pulmonary index being beyond a threshold. Computed pulmonary function index values and their associated patient's activity levels may be stored periodically in a memory and/or transmitted to a patient-external device.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: June 10, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, John Voegele, Jesse W. Hartley, Avram Scheiner
  • Patent number: 8738133
    Abstract: The invention relates to cardiac rhythm management systems, and more particularly, to rate adaptive cardiac pacing systems and methods. In an embodiment, the invention includes a cardiac rhythm management device. The device can include a pulse generator for generating electrical pulses to be delivered to a heart at a pacing rate, a processor in communication with the pulse generator, and one or more sensors for sensing pulmonary function and cardiac function. The processor can be configured to increase the pacing rate if the pulmonary function is increasing with time and the cardiac function is not decreasing with time, maintain the pacing rate if the pulmonary function is increasing with time and the cardiac function is decreasing with time, and decrease the pacing rate if the respiratory function is decreasing with time.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 27, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Allan Charles Shuros, Donald L. Hopper, Michael J. Kane
  • Patent number: 8639324
    Abstract: An implantable or ambulatory medical device can include a cardiac signal sensing circuit configured to provide a sensed cardiac depolarization signal of a heart of a subject, a respiration sensing circuit configured to provide a signal representative of respiration of the subject, and a control circuit communicatively coupled to the cardiac signal sensing circuit and the respiration circuit. The control circuit includes a tachyarrhythmia detection circuit configured to determine heart rate using the depolarization signal, determine a respiration parameter of the subject using the respiration signal, calculate a ratio using the determined heart rate and the determined respiration parameter, generate an indication of tachyarrhythmia when the calculated ratio satisfies a specified detection ratio threshold value, and provide the indication of tachyarrhythmia to a user or process.
    Type: Grant
    Filed: January 19, 2012
    Date of Patent: January 28, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Efdal Elferri, Randall L. McPherson, Donald L. Hopper, Gary T. Seim, James O. Gilkerson, Dan Li, David L. Perschbacher
  • Publication number: 20140012345
    Abstract: An implantable cardiac device is configured and programmed to assess a patient's cardiopulmonary function by evaluating the patient's minute ventilation response. Such evaluation may be performed by computing a minute ventilation response slope, defined as the ratio of an incremental change in minute ventilation to an incremental change in measured activity level. The minute ventilation response slope may then be compared with a normal range to assess the patient's functional status.
    Type: Application
    Filed: September 12, 2013
    Publication date: January 9, 2014
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Donald L. Hopper, Bruce Wilkoff, Richard Morris
  • Patent number: 8626276
    Abstract: Cardiac monitoring and/or stimulation methods and systems that provide one or more of monitoring, diagnosing, defibrillation, and pacing. Cardiac signal separation is employed to detect, monitor, track and/or trend ischemia using cardiac activation sequence information. Ischemia detection may involve sensing composite cardiac signals using implantable electrodes, and performing a signal separation that produces one or more cardiac activation signal vectors associated with one or more cardiac activation sequences. A change in the signal vector may be detected using subsequent separations. The change may be an elevation or depression of the ST segment of a cardiac cycle or other change indicative of myocardial ischemia, myocardial infarction, or other pathological change. The change may be used to predict, quantify, and/or qualify an event such as an arrhythmia, a myocardial infarction, or other pathologic change. Information associated with the vectors may be stored and used to track the vectors.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: January 7, 2014
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Yi Zhang, Scott A. Meyer, Jeffrey E. Stahmann, Carlos Alberto Ricci, Marina Brockway, Aaron R. McCabe, Yinghong Yu, Donald L. Hopper