Patents by Inventor Donald R. Scifres

Donald R. Scifres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5499261
    Abstract: A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity.
    Type: Grant
    Filed: September 12, 1994
    Date of Patent: March 12, 1996
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: 5453641
    Abstract: A cooling device formed in a thermally conductive substrate having at least one microchannel of dimensions that induce capillary action and a surface in thermal contact with a heated region. The microchannel has a longitudinal opening oriented away from the heated region and is supplied with liquid coolant which is contained by a meniscus near the opening. The coolant vaporizes at the meniscus and absorbs heat but, due to increased pressure in the coolant contained by the meniscus, does not boil within the microchannel, allowing more liquid coolant contact with the thermally conductive substrate and walls. The vaporized coolant is discharged into a chamber facing the opening which can be at a lower pressure to remove additional heat by gaseous expansion. The discharge of gaseous coolant allows the capillary flow of the liquid coolant in the microchannels to be unimpeded, and may be augmented by a fluid pump.
    Type: Grant
    Filed: July 16, 1993
    Date of Patent: September 26, 1995
    Assignee: SDL, Inc.
    Inventors: David C. Mundinger, Donald R. Scifres
  • Patent number: 5392308
    Abstract: A semiconductor laser having a light amplifying diode heterostructure with a flared gain region in an external resonant cavity. The flared gain region has a narrow aperture end which may be coupled to a single mode waveguide and a wide output end. A light emitting surface of the heterostructure proximate to the wide end of the flared gain region is partially reflective and combines with an external reflector to form a resonant cavity that is effectively unstable. The intracavity light-emitting surface proximate to the narrow aperture end is antireflection coated. The external reflector may be a planar mirror or a grating reflector. A lens or an optical fiber may couple the aperture end of the flared gain region to the external reflector. Frequency-selective feedback is provided by orienting the grating reflector or providing a prism in the cavity in front of the external planar mirror. Other filtering elements may also be placed in the external cavity.
    Type: Grant
    Filed: January 7, 1993
    Date of Patent: February 21, 1995
    Assignee: SDL, Inc.
    Inventors: David F. Welch, David G. Mehuys, Donald R. Scifres
  • Patent number: 5337328
    Abstract: A semiconductor laser includes a grating that is disposed at an angle to cavity reflectors to coherently diffract a beam of light along a path that is at least partially laterally directed within the cavity. The grating period and orientation are selected such that a specified wavelength of the light beam propagating along the path will resonate for light that impinges upon the end reflectors at normal incidence. By keeping the angle of incidence of the light beam upon the grating greater than about 45 degrees, reflectivity of the grating is maximized and the required grating period is larger thereby simplifying the fabrication of the grating.
    Type: Grant
    Filed: July 27, 1993
    Date of Patent: August 9, 1994
    Assignee: SDL, Inc.
    Inventors: Robert J. Lang, Kenneth M. Dzurko, Donald R. Scifres, David F. Welch
  • Patent number: 5321718
    Abstract: A compact semiconductor laser light source providing short wavelength (ultraviolet, blue or green) coherent light by means of frequency doubling of red or infrared light from a high power diode heterostructure. The high power diode heterostructure is a MOPA device having a single mode laser oscillator followed by a multimode, preferably flared, optical power amplifier. A tunable configuration having an external rear reflector grating could also be used. A lens could be integrated with the MOPA to laterally collimate the light before it is emitted. Straight or curved, surface emitting gratings could also be incorporated. An astigmatism-correcting lens system having at least one cylindrical lens surface is disposed in the path of the output from the MOPA to provide a beam with substantially equal lateral and transverse beam width dimensions and beam divergence angles. A nonlinear optical crystal or waveguide is placed in the path of the astigmatism-free symmetrized beam to double the frequency of the light.
    Type: Grant
    Filed: January 28, 1993
    Date of Patent: June 14, 1994
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Donald R. Scifres, Robert J. Lang, Derek W. Nam
  • Patent number: 5282080
    Abstract: An optical amplifier with at least one high reflectivity facet oriented at a nonperpendicular angle to the amplifier's waveguide to couple light vertically through a top or bottom surface of the amplifier. Angled facets could be at just one end of the waveguide or at both ends of the waveguide. In the latter case, the facets can be approximately parallel to or perpendicular to each other for respective coupling to opposite or same sides of the amplifier. Multiple amplifiers can be formed end-to-and with v-grooves defining the angled facets or can be formed side-by-side with parallel waveguides. Waveguides can also branch to form a 1:2, 1:4 or 2:2 optical signal multiplier or optical switch depending on whether just one or all of the waveguide branches are electrically pumped. Fibers are coupled to the amplifier receiving and emitting surfaces. Angling the fiber end with respect to the surface prevents reflections from feeding back into the amplifier waveguide.
    Type: Grant
    Filed: December 9, 1991
    Date of Patent: January 25, 1994
    Assignee: SDL, Inc.
    Inventors: Donald R. Scifres, David F. Welch
  • Patent number: 5255332
    Abstract: An optical crossbar switch matrix for use in switching optical signals from a first set of optical fibers to a second set of optical fibers, in any order, which is characterized by having a matrix of rows and columns of diffraction gratings formed in a semiconductor heterostructure. Each grating is independently biased with either a forward or reverse bias voltage to switch the grating between a reflective state and a transmissive state. The gratings are oriented at an angle relative to the rows and columns so that when the Bragg condition for the light received from an optical film is met, a portion of the light is diffracted from the row in which it is propagating into a column toward another optical fiber. The heterostructure may include optical amplifiers to restore the optical signal to its original power level. Beam expanding, collimating and focussing optics may also be integrated into the heterostructure.
    Type: Grant
    Filed: July 16, 1992
    Date of Patent: October 19, 1993
    Assignee: SDL, Inc.
    Inventors: David F. Welch, Donald R. Scifres, Robert G. Waarts, Amos A. Hardy, David G. Mehuys, Stephen O'Brien
  • Patent number: 5252513
    Abstract: The present invention is an apparatus and method for providing detection of a laser output on a semiconductor wafer. A laser cavity and a detection cavity are formed on a semiconductor wafer in parallel such that light emitted laterally from the laser cavity is detected by the detection cavity. The amount of light detected can then be transformed into data, which in turn can be used to control the output of the laser.
    Type: Grant
    Filed: June 12, 1991
    Date of Patent: October 12, 1993
    Assignee: Xerox Corporation
    Inventors: Thomas L. Paoli, G. A. N. Connell, Donald R. Scifres, Robert L. Thornton
  • Patent number: 5231642
    Abstract: A semiconductor laser that includes at least one grating reflector with a grating period selected to diffract at a nonperpendicular angle within the plane of the laser waveguide. This allows dispersal of laser light, eliminating filamentary multimode operation of broad area lasers. In one embodiment, the grating reflector couples light between a single transverse mode waveguide portion of the optical cavity and a second, broad area, portion that is not collinear with the single mode waveguide. In another embodiment, the cavity favors a ring mode of oscillation. One or more grating reflectors form part of the feedback mechanism which forms a resonant optical cavity with noncollinear portions. Other reflectors in the feedback mechanism include facet reflectors which can be cleaved or ion milled, or semiconductor material refractive index boundaries. Laser embodiments with two or more grating reflectors can be independently tuned to provide a high rate of amplitude modulation.
    Type: Grant
    Filed: May 8, 1992
    Date of Patent: July 27, 1993
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, Kenneth M. Dzurko, Robert G. Waarts, David F. Welch, Amos Hardy, Stephen O'Brien
  • Patent number: 5219785
    Abstract: A method using implantation to form a semiconductor laser or laser array with current blocking implants. A semiconductor material laser structure including layers of a first conductivity type, an active region and layers of a second conductivity type is formed. In a first embodiment, impurity ions of the second conductivity type are implanted into selected regions of a first conductivity type layer. The implanted ions form current blocking buried regions of the second conductivity type with current confining channels therebetween. Finally, the structure is thermally annealed. In a second embodiment, a disorder inducing impurity, which may be a saturable absorber, is diffused into selected portions of the layers of the first conductivity type through the active region. The diffusion converts side regions of those layers into the second conductivity type.
    Type: Grant
    Filed: July 25, 1990
    Date of Patent: June 15, 1993
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David F. Welch, Donald R. Scifres, William Streifer
  • Patent number: 5193098
    Abstract: A method using implantation to form a semiconductor laser or laser array with current blocking implants. A semiconductor material laser structure including layers of a first conductivity type, an active region and layers of a second conductivity type is formed. In a first embodiment, impurity ions of the second conductivity type are implanted into selected regions of a first conductivity type layer. The implanted ions form current blocking buried regions of the second conductivity type with current confining channels therebetween. Finally, the structure is thermally annealed. In a second embodiment, a disorder inducing impurity, which may be a saturable absorber, is diffused into selected portions of the layers of the first conductivity type through the active region. The diffusion converts side regions of those layers into the second conductivity type.
    Type: Grant
    Filed: August 24, 1992
    Date of Patent: March 9, 1993
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David F. Welch, Donald R. Scifres, William Streifer
  • Patent number: 5185754
    Abstract: A laser diode construction having internal reflectors within the laser cavity to provide a stable spectral mode of laser operation. The laser includes a plurality of contiguous semiconductor layers disposed on a substrate to form a semiconductor body with at least one layer forming an active region. Electrically conductive contacts bias the heterostructure to inject current into the active region and produce lightwaves. Feedback means define two or more tandem resonant optical cavities to achieve lasing operation. The feedback means includes at least one internal light reflector within the semiconductor body. In a preferred embodiment, a pair of spaced apart internal reflectors are provided with the region between the pair also being electrically pumped to define an active internal etalon. Other embodiments have multiple periodic reflectors or combine internal reflectors with feedback gratings or passive windows at the end facets of the body.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: February 9, 1993
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Richard R. Craig, David F. Welch, Erik P. Zucker, Donald R. Scifres, William J. Gignac
  • Patent number: 5159604
    Abstract: In a semiconductor laser array structure in which antiguided regions between high effective refractive index waveguide regions experience greater gain then the waveguide regions, structures introduced at the sides of the array, next to the edgemost waveguides and not on the array period, reflect laterally transmitted radiation back toward the center of the array. The edge reflecting structures may be waveguide regions having widths of (m'+1/2) half-wavelengths, where "m'" is zero or a positive integer, compared to array waveguides with width m, where "m" is an integer not necessarily equal to "m'". The edge reflecting structures may also be stacks of such waveguides, where the regions between the edge waveguides are of a width substantially equal to (n'+1/2) half-wavelengths, compared to antiguide element widths of n half-wavelengths. The two integers n and n' may be, but are not necessarily, equal.
    Type: Grant
    Filed: July 29, 1991
    Date of Patent: October 27, 1992
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: David G. Mehuys, Amos A. Hardy, David F. Welch, Robert G. Waarts, Donald R. Scifres
  • Patent number: 5103456
    Abstract: An integrated master oscillator/power amplifier semiconduction device having a laser diode oscillator, a broad area light amplifier and a coupling grating disposed to deflect light at an angle from the laser oscillator to the light amplifier. The amplifier may terminate as an output facet or use a grating surface emitter to couple amplified light out of the device. The orientation angle and grating period of the coupling grating are chosen to minimize feedback from the amplifier into the laser. This is achieved either by deflecting the light by other than a 90.degree. angle or by orienting the grating at other than 45.degree. with respect to laser even though light is deflected by 90.degree. so that any return light effectively "sees" a different grating. The laser can be a DFB or DBR laser and can be wavelength tunable.
    Type: Grant
    Filed: July 30, 1990
    Date of Patent: April 7, 1992
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, David F. Welch, William Streifer, deceased
  • Patent number: 5088105
    Abstract: An optical amplifier having one or more amplifier regions with a noncollinear light path provided by curved or folded waveguides therein between input, output and reflective surfaces provided, for example, by a low reflectivity front facet and a high reflectivity rear facet. The amplifier regions are electrically pumped via conductive contacts which may be individually addressable for each amplifier region to provide phase control of the array of emitted light. Light is accepted through the front facet by a first amplifier region, is reflected from the rear facet and is emitted through the front facet. If there are multiple amplifier regions, a portion of the light is reflected by the front facet into an adjacent amplifier region. The light path is incident on the front and rear facets at an angle other than normal thereto and preferably at most 10.degree. from normal.
    Type: Grant
    Filed: March 26, 1991
    Date of Patent: February 11, 1992
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, David F. Welch, William Streifer, deceased
  • Patent number: 5065401
    Abstract: A method of driving a multimode laser diode has pulse circuitry providing a sequence of drive current pulses to the laser and modulation circuitry superimposing a modulation current upon the drive current pulses. When the modulation amplitude and rate are sufficiently great, rapid switching of transverse modes of laser operation is induced during each laser pulse. The effect of many different modes is averaged out so that the observed light output, even in a high power apertured system, is stable both within a single pulse and from one pulse to the next.
    Type: Grant
    Filed: February 26, 1991
    Date of Patent: November 12, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, John G. Endriz
  • Patent number: 5048036
    Abstract: Semiconductor heterostructure lasers having at least one lattice mismatched strain layer in the cladding proximate to the active region. Indium or phosphorus may be added in high concentration to form the strain layers. The strain layers may be spaced somewhat apart from the active region or may be adjacent to the active region. In either case, the strain layers decrease transparency current and increase differential gain.
    Type: Grant
    Filed: January 4, 1991
    Date of Patent: September 10, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, David F. Welch, John Endriz, William Streifer, deceased
  • Patent number: 5033054
    Abstract: A laser having a phase conjugating reflector positioned with a resonant cavity of a laser configuration capable of multimode operation. The resonant cavity or other means associated with the laser configuration selects the preferred mode at threshold. The phase conjugating material builds up reflectivity as the light intensity is increased above threshold power levels to maintain the selected mode to high power levels. One embodiment has an external Talbot cavity with a first mirror in a Talbot plane of a multi-emitter laser array and with the phase conjugating material at a sub-Talbot plane. Another embodiment has an external GRIN lens cavity with a far field apertured stripe mirror for threshold mode selection. The phase conjugator is placed at a high light intensity position within the cavity such as adjacent to the stripe mirror or adjacent to the laser array. The laser source may be a linear laser diode array or a 2-D surface emitting laser array.
    Type: Grant
    Filed: August 17, 1990
    Date of Patent: July 16, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, Richard R. Craig, Robert G. Waarts
  • Patent number: RE33722
    Abstract: An optical system producing bright light output for optical pumping, communications, illumination and the like in which one or more fiberoptic waveguides receive light from one or more diode lasers or diode laser bars and transmit the light to an output end where it is focused or collimated into a bright light image. The input end of the fiberoptic waveguide may be squashed into an elongated cross section so as to guide light emitted from an elongated light source such as a diode laser bar. The waveguides are preferably arranged at the output end into a tightly packed bundle where a lens or other optical means focuses or collimates the light. For diode laser bars much wider than 100 microns, a plurality of waveguides may be arranged in a line to receive the light, and then stacked at the output in a less elongated configuration. In this manner, light from many diode lasers or laser bars may be coupled through the bundle into the end of solid state laser medium.
    Type: Grant
    Filed: August 15, 1990
    Date of Patent: October 22, 1991
    Assignee: Spectra Diode Laboratories, Inc.
    Inventors: Donald R. Scifres, D. Philip Worland
  • Patent number: RE35215
    Abstract: A compact semiconductor laser light source providing short wavelength (ultraviolet, blue or green) coherent light by means of frequency doubling of red or infrared light from a high power diode heterostructure. The high power diode heterostructure is a MOPA device having a single mode laser oscillator followed by a multimode, preferably flared, optical power amplifier. A tunable configuration having an external rear reflector grating could also be used. A lens could be integrated with the MOPA to laterally collimate the light before it is emitted. Straight or curved, surface emitting gratings could also be incorporated. An astigmatism-correcting lens system having at least one cylindrical lens surface is disposed in the path of the output from the MOPA to provide a beam with substantially equal lateral and transverse beam width dimensions and beam divergence angles. A nonlinear optical crystal or waveguide is placed in the path of the astigmatism-free symmetrized beam to double the frequency of the light.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: April 23, 1996
    Assignee: SDL, Inc.
    Inventors: Robert G. Waarts, David F. Welch, Donald R. Scifres, Robert J. Lang, Derek W. Nam