Patents by Inventor Douglas Melton Carper

Douglas Melton Carper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11702948
    Abstract: A shroud segment including a forward radial wall, an aft radial wall and at least one interlocking subcomponent. The forward radial wall, an aft radial wall and the at least one interlocking subcomponent are each formed of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The shroud segment further including an interlocking mechanical joint joining each of the forward radial wall and the aft radial wall to the at least one interlocking subcomponent. Methods are also provided for joining the forward radial wall and the aft radial wall to the at least one interlocking subcomponent using an interlocking mechanical joint.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: July 18, 2023
    Assignee: General Electric Company
    Inventors: Mackenzie Christopher Hock, Daniel Gene Dunn, Douglas Glenn Decesare, Douglas Melton Carper, Steven Robert Hayashi, Nathan Carl Sizemore, Nolan Leander Cousineau
  • Patent number: 11466580
    Abstract: A nozzle including a vane and a band, each having defined therein interlocking features. The vane and the band are each formed of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The vane and the band include one or more interlocking features. The nozzle further including an interlocking mechanical joint joining the vane and the band to one another. Methods are also provided for joining the vane and the band at the interlocking features to form an interlocking mechanical joint.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: October 11, 2022
    Assignee: General Electric Company
    Inventors: Sara Saxton Underwood, Douglas Glenn Decesare, Michael Ray Tuertscher, Daniel Gene Dunn, Douglas Melton Carper
  • Publication number: 20220056809
    Abstract: A shroud segment including a forward radial wall, an aft radial wall and at least one interlocking subcomponent. The forward radial wall, an aft radial wall and the at least one interlocking subcomponent are each formed of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The shroud segment further including an interlocking mechanical joint joining each of the forward radial wall and the aft radial wall to the at least one interlocking subcomponent. Methods are also provided for joining the forward radial wall and the aft radial wall to the at least one interlocking subcomponent using an interlocking mechanical joint.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 24, 2022
    Inventors: Mackenzie Christopher Hock, Daniel Gene Dunn, Douglas Glenn Decesare, Douglas Melton Carper, Steven Robert Hayashi, Nathan Carl Sizemore, Nolan Leander Cousineau
  • Patent number: 10738628
    Abstract: A ceramic matrix composite (CMC) component including a subcomponent, such as a band flowpath, a load bearing wall and a wall support, each comprised of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The CMC component further including at least one mechanical joint joining the subcomponent, the load bearing wall and the wall support to form the CMC component. The reinforcing fibers of the load bearing wall are oriented substantially normal to the reinforcing fibers of the subcomponent and the wall support. Methods are also provided for joining the subcomponent, the load bearing wall and the wall support to form a mechanical joint.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: August 11, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Sara Saxton Underwood, Douglas Glenn Decesare, Michael Ray Tuertscher, Daniel Gene Dunn, Douglas Melton Carper, Brian Gregg Feie
  • Publication number: 20190360346
    Abstract: A ceramic matrix composite (CMC) component including a subcomponent, such as a band flowpath, a load bearing wall and a wall support, each comprised of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The CMC component further including at least one mechanical joint joining the subcomponent, the load bearing wall and the wall support to form the CMC component. The reinforcing fibers of the load bearing wall are oriented substantially normal to the reinforcing fibers of the subcomponent and the wall support. Methods are also provided for joining the subcomponent, the load bearing wall and the wall support to form a mechanical joint.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 28, 2019
    Inventors: Sara Saxton Underwood, Douglas Glenn Decesare, Michael Ray Tuertscher, Daniel Gene Dunn, Douglas Melton Carper, Brian Gregg Feie
  • Publication number: 20190338660
    Abstract: A nozzle including a vane and a band, each having defined therein interlocking features. The vane and the band are each formed of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The vane and the band include one or more interlocking features. The nozzle further including an interlocking mechanical joint joining the vane and the band to one another. Methods are also provided for joining the vane and the band at the interlocking features to form an interlocking mechanical joint.
    Type: Application
    Filed: May 2, 2018
    Publication date: November 7, 2019
    Inventors: Sara Saxton Underwood, Douglas Glenn Decesare, Michael Ray Tuertscher, Daniel Gene Dunn, Douglas Melton Carper
  • Publication number: 20190284947
    Abstract: A shroud segment including a forward radial wall, an aft radial wall and at least one interlocking subcomponent. The forward radial wall, an aft radial wall and the at least one interlocking subcomponent are each formed of a ceramic matrix composite (CMC) including reinforcing fibers embedded in a matrix. The shroud segment further including an interlocking mechanical joint joining each of the forward radial wall and the aft radial wall to the at least one interlocking subcomponent. Methods are also provided for joining the forward radial wall and the aft radial wall to the at least one interlocking subcomponent using an interlocking mechanical joint.
    Type: Application
    Filed: March 14, 2018
    Publication date: September 19, 2019
    Inventors: Mackenzie Christopher Hock, Daniel Gene Dunn, Douglas Glenn Decesare, Douglas Melton Carper, Steven Robert Hayashi, Nathan Carl Sizemore, Nolan Leander Cousineau
  • Patent number: 9005382
    Abstract: A method for forming a ceramic matrix composite (CMC) component for gas turbine engines. The method contemplates replacing a plurality of plies with insert material. The insert material can be partially cured or pre-cured and applied in place of a plurality of small plies or it may be inserted into cavities of a component in the form of a paste or a ply. The insert material is isotropic, being formed of a combination of matrix material and chopped fibers, tow, cut plies or combinations thereof. The use of the insert material allows for features such as thin edges (650) with thicknesses of less than about 0.030 inches and small radii such as found in corners (680, 710). The CMC components of the present invention replace small ply inserts cut to size to fit into areas of contour change or thickness change, and replace the small ply inserts with a fabricated single piece discontinuously reinforced composite insert, resulting in fewer defects, such as wrinkles, and better dimensional control.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: April 14, 2015
    Assignee: General Electric Company
    Inventors: James Dale Steibel, Douglas Melton Carper, Suresh Subramanian, Stephen Mark Whiteker
  • Patent number: 8663778
    Abstract: A three-dimensional preform, composite components formed with the preform, and processes for producing the preform and composite materials. The three-dimensional preform includes first and second sets of tows containing filaments. Each tow of the first set has a predetermined polygonal cross-sectional shape and is embedded within a temporary matrix. The preform is fabricated from the first and second sets of tows, in which the second set of tows are transverse to the first set of tows, adjacent tows of the second set are spaced apart to define interstitial regions therebetween, and the polygonal cross-sectional shapes of the first set of tows are substantially congruent to the cross-sectional shapes of the interstitial regions so as to substantially fill the interstitial regions.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: March 4, 2014
    Assignee: General Electric Company
    Inventors: Timothy Daniel Kostar, Douglas Melton Carper, Suresh Subramanian, James Dale Steible
  • Publication number: 20110229337
    Abstract: The present invention is a hybrid ceramic matrix composite turbine engine component comprising an outer shell section(s) and an inner core section(s), wherein the outer shell section(s) and the inner core section(s) were bonded together using a melt infiltration (MI) process. The outer shell section(s) comprises a SiC/SiC material that has been manufactured using a process selected from the group consisting of a slurry cast MI process and a prepreg MI process. The inner core section(s) comprises a material selected from the group consisting an Si/SiC composite material and a monolithic ceramic material. The Si/SiC composite material may be manufactured using the Silcomp process. The present invention may be a high pressure turbine blade, a high pressure turbine vane, a low pressure turbine blade, or a low pressure turbine vane. The present invention is also a method of manufacturing a hybrid ceramic matrix composite turbine engine component.
    Type: Application
    Filed: June 30, 2010
    Publication date: September 22, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Douglas Melton Carper, Suresh Subramanian, Richard William Jendrix, James Dale Steibel
  • Publication number: 20110215502
    Abstract: The integral layer provides a ductile interface for attachment locations of a turbine engine component where a metallic surface is adjacent the attachment location. The ductile layer provides a favorable load distribution through the composite at the attachment location, and eliminates the need for a metallic shim.
    Type: Application
    Filed: March 3, 2011
    Publication date: September 8, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Douglas Melton CARPER, Suresh SUBRAMANIAN
  • Patent number: 7968031
    Abstract: The integral layer provides a ductile interface for attachment locations of a turbine engine component where a metallic surface is adjacent the attachment location. The ductile layer provides a favorable load distribution through the composite at the attachment location, and eliminates the need for a metallic shim.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: June 28, 2011
    Assignee: General Electric Company
    Inventors: Douglas Melton Carper, Suresh Sabramanian
  • Publication number: 20110027525
    Abstract: A three-dimensional preform, composite components formed with the preform, and processes for producing the preform and composite materials. The three-dimensional preform includes first and second sets of tows containing filaments. Each tow of the first set has a predetermined polygonal cross-sectional shape and is embedded within a temporary matrix. The preform is fabricated from the first and second sets of tows, in which the second set of tows are transverse to the first set of tows, adjacent tows of the second set are spaced apart to define interstitial regions therebetween, and the polygonal cross-sectional shapes of the first set of tows are substantially congruent to the cross-sectional shapes of the interstitial regions so as to substantially fill the interstitial regions.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 3, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Timothy Daniel Kostar, Douglas Melton Carper, Suresh Subramanian, James Dale Steibel
  • Patent number: 7837914
    Abstract: A preform architecture and process for producing composite materials, and particularly CMC components. The process entails producing a composite component having a matrix material reinforced with a three-dimensional preform. The process includes producing first and second sets of tows containing filaments. Each tow of the first set has a predetermined cross-sectional shape and is embedded within a temporary matrix material formed of a material that is not the matrix material or a precursor of the matrix material. The preform is then fabricated from the first and second sets of tows, in which the second set of tows are transverse to the first set of tows, adjacent tows of the second set are spaced apart to define interstitial regions therebetween, and the cross-sectional shapes of the first set of tows are substantially congruent to the cross-sectional shapes of the interstitial regions so as to substantially fill the interstitial regions.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: November 23, 2010
    Assignee: General Electric Company
    Inventors: Timothy Daniel Kostar, Douglas Melton Carper, Suresh Subramanian, James Dale Steibel
  • Patent number: 7754126
    Abstract: A method of manufacturing a turbine engine component is disclosed. The method includes the steps of providing a plurality of ceramic cloth plies, each ply having woven ceramic fiber tows and at least one fugitive fiber tow, laying up the plurality of plies in a preselected arrangement to form a turbine engine component shape, oxidizing the fugitive fibers to produce fugitive fiber void regions in the ply, rigidizing the component shape to form a coated component preform using chemical vapor infiltration, partially densifying the coated component preform using carbon-containing slurry, and further densifying the coated component preform with at least silicon to form a ceramic matrix composite turbine engine component having matrix rich regions.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: July 13, 2010
    Assignee: General Electric Company
    Inventors: Suresh Subramanian, James Dale Steibel, Douglas Melton Carper
  • Publication number: 20090324878
    Abstract: A ceramic matrix composite (CMC) component for gas turbine engines, the component having fine features such as thin edges with thicknesses of less than about 0.030 inches and small radii of less that about 0.030 inches formed using the combination of prepreg plies layed up with non-ply ceramic inserts. The CMC components of the present invention replace small ply inserts cut to size to fit into areas of contour change or thickness change, and replace the small ply inserts with a fabricated single piece discontinuously reinforced composite insert, resulting in fewer defects, such as wrinkles, and better dimensional control.
    Type: Application
    Filed: September 4, 2009
    Publication date: December 31, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: James Dale STEIBEL, Douglas Melton CARPER, Suresh SUBRAMANIAN, Stephen Mark WHITEKER
  • Publication number: 20090317612
    Abstract: A ceramic matrix composite with a ceramic matrix and a gradient layering of coating on ceramic fibers. The coating typically improves the performance of the composite in one direction while degrading it in another direction. For a SiC-SiC ceramic matrix composite, a BN coating is layered in a gradient fashion or in a step-wise fashion in different regions of the article comprising the ceramic. The BN coating thickness is applied over the ceramic fibers to produce varying desired physical properties by varying the coating thickness within differing regions of the composite, thereby tailoring the strength of the composite in the different regions. The coating may be applied as a single layer as a multi-layer coating to enhance the performance of the coating as the ceramic matrix is formed or infiltrated from precursor materials into a preform of the ceramic fibers.
    Type: Application
    Filed: August 25, 2009
    Publication date: December 24, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Suresh SUBRAMANIAN, James Dale STEIBEL, Douglas Melton CARPER, Toby George DARKINS, JR.
  • Patent number: 7600979
    Abstract: A ceramic matrix composite (CMC) component for gas turbine engines, the component having fine features such as thin edges with thicknesses of less than about 0.030 inches and small radii of less that about 0.030 inches formed using the combination of prepreg plies layed up with non-ply ceramic inserts. The CMC components of the present invention replace small ply inserts cut to size to fit into areas of contour change or thickness change, and replace the small ply inserts with a fabricated single piece discontinuously reinforced composite insert, resulting in fewer defects, such as wrinkles, and better dimensional control.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: October 13, 2009
    Assignee: General Electric Company
    Inventors: James Dale Steibel, Douglas Melton Carper, Suresh Subramanian, Stephen Mark Whiteker
  • Patent number: 7597838
    Abstract: A ceramic matrix composite with a ceramic matrix and a gradient layering of coating on ceramic fibers. The coating typically improves the performance of the composite in one direction while degrading it in another direction. For a SiC-SiC ceramic matrix composite, a BN coating is layered in a gradient fashion or in a step-wise fashion in different regions of the article comprising the ceramic. The BN coating thickness is applied over the ceramic fibers to produce varying desired physical properties by varying the coating thickness within differing regions of the composite, thereby tailoring the strength of the composite in the different regions. The coating may be applied as a single layer as a multi-layer coating to enhance the performance of the coating as the ceramic matrix is formed or infiltrated from precursor materials into a preform of the ceramic fibers.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: October 6, 2009
    Assignee: General Electric Company
    Inventors: Suresh Subramanian, James Dale Steibel, Douglas Melton Carper, Toby George Darkins, Jr.
  • Patent number: 7579094
    Abstract: The present invention is a ceramic matrix composite turbine engine component, wherein the component has a direction of maximum tensile stress during normal engine operation. The component comprises a plurality of biased ceramic plies, wherein each biased ply comprises ceramic fiber tows, the tows being woven in a first warp direction and a second weft direction, the second weft direction lying at a preselected angular orientation with respect to the first warp direction, wherein a greater number of tows are woven in the first warp direction than in the second weft direction, and wherein a number of tows in the second weft direction allows the biased plies to maintain their structural integrity when handled.
    Type: Grant
    Filed: June 16, 2006
    Date of Patent: August 25, 2009
    Assignee: General Electric Company
    Inventors: Suresh Subramanian, James Dale Steibel, Douglas Melton Carper, Brian Keith Flandermeyer