Patents by Inventor Douglas N. Reed

Douglas N. Reed has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9889835
    Abstract: A vehicle includes a brake system. The brake system includes a hydraulic brake line having a line pressure. The vehicle additionally includes a vacuum reservoir. The vacuum reservoir is selectively fluidly coupled to the hydraulic brake line. The vacuum reservoir is configured to, when fluidly coupled to the hydraulic brake line, reduce the line pressure during a drive cycle.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: February 13, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: David B. Antanaitis, Kevin D. Connor, Douglas N. Reed
  • Publication number: 20180037206
    Abstract: A vehicle includes a brake system. The brake system includes a hydraulic brake line having a line pressure. The vehicle additionally includes a vacuum reservoir. The vacuum reservoir is selectively fluidly coupled to the hydraulic brake line. The vacuum reservoir is configured to, when fluidly coupled to the hydraulic brake line, reduce the line pressure during a drive cycle.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 8, 2018
    Inventors: David B. Antanaitis, Kevin D. Connor, Douglas N. Reed
  • Patent number: 9651105
    Abstract: A number of variations may include a brake rotor having a surface oxide layer and methods of making the same.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: May 16, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael L. Holly, Douglas N. Reed
  • Patent number: 8740468
    Abstract: The apparatus includes a first component mounted for rotation with the wheel and a second component spaced from the first component by a predetermined gap and not connected for rotation with the wheel. One of the first and the second components is displaced relative to the other upon a force to close the gap and contact the other component to form a load path for the force. The load path is a secondary load path that bypasses the bearing races, preventing excessive plastic deformation of the races. The apparatus is configured with at least one feature to inhibit corrosion of the first and second components at the gap. The feature may be an extension of the second component that localizes the gap to just a portion of the second component. Alternatively, coatings, shims, lubricants, and seals may be used alone or in combination to prevent corrosion at the gap.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: June 3, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Robert G. Sutherlin, Douglas N. Reed
  • Patent number: 8698489
    Abstract: A wheel assembly for a non-driven wheel includes a rotating wheel hub with a shaft portion supporting a bearing inner race. A magnetic encoder is mounted for rotation with the shaft portion. A non-rotating component radially surrounds the shaft portion and has a bearing outer race. A cap is secured to the non-rotating component and covers the outer and inner races, the shaft portion and the magnetic encoder inboard of the races to seal an inboard side of the outer and inner races. A sensor is mounted to a non-rotating vehicle steering member externally to, not covered by, and not extending through the cap. The sensor is configured to deflect to be biased into continuous contact with an outer surface of the cap to read the magnetic encoder through the cap without extending through the cap.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 15, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Todd D. Albertson, Vincent R. Sicilia, Josef Mack, Phanu Amatyakul, William P. Job, Robert G. Sutherlin, Michael L. Holly, Douglas N. Reed
  • Publication number: 20130327604
    Abstract: A number of variations may include a brake rotor having a surface oxide layer and methods of making the same.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: GM Global Technology Operations LLC
    Inventors: Michael L. Holly, Douglas N. Reed
  • Patent number: 8585833
    Abstract: Ferritic nitrocarburized surface treatment of cast iron brake rotors providing oxidation resistance, good braking performance and absence of distortion. Machined brake rotors are pre-heated, then immersed into a high temperature molten nitrocarburizing salt bath for a first predetermined dwell time. After removing the brake rotors from the nitrocarburizing salt bath, the brake rotors are directly immersed into an oxidizing salt bath at a lower temperature than the nitrocarburizing salt bath so that the brake rotors are thermally quenched. After a predetermined second dwell time in the oxidizing salt bath, the brake rotors are removed therefrom and further cooled to room temperature, either by water application thermal quenching or slow cooling in air. A fixture provides stable holding the brake rotors with a minimum of contact during placement in the salt baths.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: November 19, 2013
    Assignees: GM Global Technology Operations LLC, Kolene Corporation
    Inventors: Michael L. Holly, Douglas N. Reed, James R. Easterday
  • Publication number: 20130000787
    Abstract: Ferritic nitrocarburized surface treatment of cast iron brake rotors providing oxidation resistance, good braking performance and absence of distortion. Machined brake rotors are pre-heated, then immersed into a high temperature molten nitrocarburizing salt bath for a first predetermined dwell time. After removing the brake rotors from the nitrocarburizing salt bath, the brake rotors are directly immersed into an oxidizing salt bath at a lower temperature than the nitrocarburizing salt bath so that the brake rotors are thermally quenched. After a predetermined second dwell time in the oxidizing salt bath, the brake rotors are removed therefrom and further cooled to room temperature, either by water application thermal quenching or slow cooling in air. A fixture provides stable holding the brake rotors with a minimum of contact during placement in the salt baths.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 3, 2013
    Applicants: KOLENE CORPORATION, GM Global Technology Operations LLC
    Inventors: Michael L. Holly, Douglas N. Reed, James R. Easterday
  • Patent number: 8287667
    Abstract: Ferritic nitrocarburized surface treatment of cast iron brake rotors providing oxidation resistance, good braking performance and absence of distortion. Machined brake rotors are pre-heated, then immersed into a high temperature molten nitrocarburizing salt bath for a first predetermined dwell time. After removing the brake rotors from the nitrocarburizing salt bath, the brake rotors are directly immersed into an oxidizing salt bath at a lower temperature than the nitrocarburizing salt bath so that the brake rotors are thermally quenched. After a predetermined second dwell time in the oxidizing salt bath, the brake rotors are removed therefrom and further cooled to room temperature, either by water application thermal quenching or slow cooling in air. A fixture provides stable holding the brake rotors with a minimum of contact during placement in the salt baths.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: October 16, 2012
    Assignees: GM Global Technology Operations LLC, Kolene Corporation
    Inventors: Michael L. Holly, Douglas N. Reed, James R. Easterday
  • Publication number: 20110243487
    Abstract: The apparatus includes a first component mounted for rotation with the wheel and a second component spaced from the first component by a predetermined gap and not connected for rotation with the wheel. One of the first and the second components is displaced relative to the other upon a force to close the gap and contact the other component to form a load path for the force. The load path is a secondary load path that bypasses the bearing races, preventing excessive plastic deformation of the races. The apparatus is configured with at least one feature to inhibit corrosion of the first and second components at the gap. The feature may be an extension of the second component that localizes the gap to just a portion of the second component. Alternatively, coatings, shims, lubricants, and seals may be used alone or in combination to prevent corrosion at the gap.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 6, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Robert G. Sutherlin, Douglas N. Reed
  • Publication number: 20110181102
    Abstract: A wheel assembly for a non-driven wheel includes a rotating wheel hub with a shaft portion supporting a bearing inner race. A magnetic encoder is mounted for rotation with the shaft portion. A non-rotating component radially surrounds the shaft portion and has a bearing outer race. A cap is secured to the non-rotating component and covers the outer and inner races, the shaft portion and the magnetic encoder inboard of the races to seal an inboard side of the outer and inner races. A sensor is mounted to a non-rotating vehicle steering member externally to, not covered by, and not extending through the cap. The sensor is configured to deflect to be biased into continuous contact with an outer surface of the cap to read the magnetic encoder through the cap without extending through the cap.
    Type: Application
    Filed: November 22, 2010
    Publication date: July 28, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Todd D. Albertson, Vincent R. Sicilia, Josef Mack, Phanu Amatyakul, William P. Job, Robert G. Sutherlin, Michael L. Holly, Douglas N. Reed
  • Publication number: 20110151238
    Abstract: A method of forming a low-friction coating on a metal substrate includes ferritic nitrocarburizing the metal substrate to form a surface of the metal substrate, wherein the surface includes a compound zone and a diffusion zone disposed subjacent to the compound zone. After ferritic nitrocarburizing, the method includes oxidizing the compound zone to form a porous portion defining a plurality of pores, and, after oxidizing, coating the porous portion with polytetrafluoroethylene. The method further includes, after coating, curing the polytetrafluoroethylene to thereby form the low-friction coating. A low-friction coating system includes the metal substrate having the surface including the compound zone and the diffusion zone disposed subjacent said compound zone, wherein said compound zone includes the porous portion defining the pores, and a cured film formed from polytetrafluoroethylene disposed sufficiently on the porous portion so as to at least partially fill at least one of the plurality of pores.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Michael L. Holly, Sumie S. Thaker, Brian K. Bartnick, Casimir S. Jaworowicz, Robert G. Sutherlin, Douglas N. Reed
  • Publication number: 20110135233
    Abstract: An apparatus is provided for a vehicle having a wheel and a wheel bearing assembly with bearing races supporting the wheel. The apparatus includes a first component mounted for rotation with the wheel and a second component spaced from the first component by a predetermined gap and not connected for rotation with the wheel. One of the first and the second components is displaced relative to the other upon a force to close the gap and contact the other of the first and second components to at least partially form a load path for the force that bypasses the bearing races.
    Type: Application
    Filed: August 31, 2010
    Publication date: June 9, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Robert G. Sutherlin, Douglas N. Reed
  • Publication number: 20080000550
    Abstract: Ferritic nitrocarburized surface treatment of cast iron brake rotors providing oxidation resistance, good braking performance and absence of distortion. Machined brake rotors are pre-heated, then immersed into a high temperature molten nitrocarburizing salt bath for a first predetermined dwell time. After removing the brake rotors from the nitrocarburizing salt bath, the brake rotors are directly immersed into an oxidizing salt bath at a lower temperature than the nitrocarburizing salt bath so that the brake rotors are thermally quenched. After a predetermined second dwell time in the oxidizing salt bath, the brake rotors are removed therefrom and further cooled to room temperature, either by water application thermal quenching or slow cooling in air. A fixture provides stable holding the brake rotors with a minimum of contact during placement in the salt baths.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., KOLENE CORPORATION
    Inventors: Michael L. Holly, Douglas N. Reed, James R. Easterday