Patents by Inventor Douglas R. Dykaar

Douglas R. Dykaar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11682746
    Abstract: There are provided methods of growing arrays of light emitters on substrates. An example method includes adjusting a growth parameter of a given light emitter of an array of light emitters on a substrate to obtain an adjusted growth parameter. The adjusting may be based on a location of the given light emitter on the substrate. The adjusting may be to compensate for nonuniformity in a growth profile of the light emitters across the substrate. The nonuniformity may be associated with a corresponding nonuniformity among wavelengths of light generated by the light emitters. Adjusting the growth parameter may be to adjust the corresponding nonuniformity. The method may also include growing the given light emitter on the substrate based on the adjusted growth parameter. Arrays of corresponding light emitters are also described.
    Type: Grant
    Filed: September 29, 2020
    Date of Patent: June 20, 2023
    Assignee: DIFTEK LASERS, INC.
    Inventor: Douglas R. Dykaar
  • Patent number: 11668927
    Abstract: Systems, devices, and methods for providing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. The optical engines of the present disclosure may integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Wavelength stabilization for the laser diodes is achieved by controlling the temperature of the lasers to always be in a particular range of operating specifications which provides wavelength stabilization that meets particular performance criteria. The lasers themselves may be used for temperature control by selectively switching them on to maintain their temperature within a specified range. Alternatively, compact resistive heaters may be positioned proximate the laser diodes to control the temperature of the laser diodes during operation. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: June 6, 2023
    Assignee: GOOGLE LLC
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar, John Domm
  • Publication number: 20220137420
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Application
    Filed: January 19, 2022
    Publication date: May 5, 2022
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar, Martin Joseph Kiik, Syed Moez Haque
  • Patent number: 11156836
    Abstract: Systems, devices, and methods for optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. The optical engines include an optical director element that includes a curved reflective surface (e.g., parabolic cylinder) that redirects laser light beams and collimates the same along the fast axes thereof. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 26, 2021
    Assignee: Google LLC
    Inventor: Douglas R. Dykaar
  • Patent number: 11009705
    Abstract: Systems, devices, and methods for optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. The optical engines include an optical director element that includes a curved reflective surface (e.g., parabolic cylinder) that redirects laser light beams and collimates the same along the fast axes thereof. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 18, 2021
    Assignee: Google LLC
    Inventor: Douglas R. Dykaar
  • Patent number: 10971889
    Abstract: Systems, devices, and methods for narrow waveband laser diodes are described. The conventional coating on the output facet of a laser diode is replaced with a notch filter coating that is reflective of wavelengths within a narrow waveband around the nominal output wavelength of the laser diode and transmissive of other wavelengths. The notch filter coating ensures the laser diode will lase at the nominal wavelength and not lase for wavelengths outside of the narrow waveband. The notch-filtered laser diode provides a narrow waveband output that is matched to the playback wavelength of at least one hologram in a transparent combiner of a wearable heads-up display, and thereby reduces or eliminates display aberrations that can result from wavelength sensitivity of the playback properties of the hologram.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: April 6, 2021
    Assignee: GOOGLE LLC
    Inventor: Douglas R. Dykaar
  • Publication number: 20210098648
    Abstract: There are provided methods of growing arrays of light emitters on substrates. An example method includes adjusting a growth parameter of a given light emitter of an array of light emitters on a substrate to obtain an adjusted growth parameter. The adjusting may be based on a location of the given light emitter on the substrate. The adjusting may be to compensate for nonuniformity in a growth profile of the light emitters across the substrate. The nonuniformity may be associated with a corresponding nonuniformity among wavelengths of light generated by the light emitters. Adjusting the growth parameter may be to adjust the corresponding nonuniformity. The method may also include growing the given light emitter on the substrate based on the adjusted growth parameter. Arrays of corresponding light emitters are also described.
    Type: Application
    Filed: September 29, 2020
    Publication date: April 1, 2021
    Inventor: Douglas R. DYKAAR
  • Patent number: 10942359
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: March 9, 2021
    Assignee: Google LLC
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar
  • Patent number: 10656353
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating or edge couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. A waveguide medium having one or more directly written waveguides may couple light from laser diodes to a photonic integrated circuit, and may optionally hermetically or partially hermetically seal the laser diodes, eliminating the need for a separate seal. Such optical engines may have advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: May 19, 2020
    Assignee: North Inc.
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Martin Joseph Kiik, Syed Moez Haque, Douglas R. Dykaar
  • Patent number: 10649215
    Abstract: Systems, devices, and methods for optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. The optical engines include an optical director element that includes a curved reflective surface (e.g., parabolic cylinder) that redirects laser light beams and collimates the same along the fast axes thereof. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 12, 2020
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10571703
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: December 11, 2018
    Date of Patent: February 25, 2020
    Assignee: North Inc.
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar
  • Publication number: 20200026080
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Application
    Filed: November 28, 2018
    Publication date: January 23, 2020
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar
  • Patent number: 10527856
    Abstract: Systems, devices, and methods for optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. The optical engines include an optical director element that includes a curved reflective surface (e.g., parabolic cylinder) that redirects laser light beams and collimates the same along the fast axes thereof. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: January 7, 2020
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10510819
    Abstract: There is provided a method of forming a light source, the method comprising providing a backplane comprising a backplane substrate and a semiconductor particle formed separately from the backplane substrate and then fixed upon the backplane substrate at a predetermined position. The semiconductor particle can be planarized to remove a portion of the semiconductor particle and to expose at a cross-section of the semiconductor particle a planar surface. Moreover, the backplane may comprise a controllable gated electronic component on or directly beneath the planar surface. The controllable gated electronic component may be configured to control an LED emitter. The method further comprises providing the LED emitter comprising one or more LEDs electrically connected to the backplane such that at least one of the LEDs is electrically connected to the controllable gated electronic component.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: December 17, 2019
    Assignee: DIFTEK LASERS, INC.
    Inventor: Douglas R. Dykaar
  • Patent number: 10505338
    Abstract: Systems, devices, and methods for narrow waveband laser diodes are described. The conventional coating on the output facet of a laser diode is replaced with a notch filter coating that is reflective of wavelengths within a narrow waveband around the nominal output wavelength of the laser diode and transmissive of other wavelengths. The notch filter coating ensures the laser diode will lase at the nominal wavelength and not lase for wavelengths outside of the narrow waveband. The notch-filtered laser diode provides a narrow waveband output that is matched to the playback wavelength of at least one hologram in a transparent combiner of a wearable heads-up display, and thereby reduces or eliminates display aberrations that can result from wavelength sensitivity of the playback properties of the hologram.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: December 10, 2019
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10466488
    Abstract: Systems, devices, and methods for narrow waveband laser diodes are described. The conventional coating on the output facet of a laser diode is replaced with a notch filter coating that is reflective of wavelengths within a narrow waveband around the nominal output wavelength of the laser diode and transmissive of other wavelengths. The notch filter coating ensures the laser diode will lase at the nominal wavelength and not lase for wavelengths outside of the narrow waveband. The notch-filtered laser diode provides a narrow waveband output that is matched to the playback wavelength of at least one hologram in a transparent combiner of a wearable heads-up display, and thereby reduces or eliminates display aberrations that can result from wavelength sensitivity of the playback properties of the hologram.
    Type: Grant
    Filed: July 26, 2018
    Date of Patent: November 5, 2019
    Assignee: North Inc.
    Inventor: Douglas R. Dykaar
  • Patent number: 10446629
    Abstract: There is provided a method of forming an active matrix display, the method comprising providing a backplane comprising: a backplane substrate, a semiconductor particle formed separately from the backplane substrate and then fixed upon the backplane substrate at a predetermined position, the semiconductor particle planarized to remove portions of the semiconductor particle and to expose at a cross-section of the semiconductor particle a planar surface, and a controllable gated electronic component on or directly beneath the planar surface. The method also comprises providing an LED emitter comprising one or more LEDs electrically connected to the backplane such that at least one of the LEDs is electrically connected to the controllable gated electronic component.
    Type: Grant
    Filed: October 12, 2017
    Date of Patent: October 15, 2019
    Assignee: DIFTEK LASERS, INC.
    Inventor: Douglas R. Dykaar
  • Publication number: 20190229495
    Abstract: Systems, devices, and methods for providing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. The optical engines of the present disclosure may integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Wavelength stabilization for the laser diodes is achieved by controlling the temperature of the lasers to always be in a particular range of operating specifications which provides wavelength stabilization that meets particular performance criteria. The lasers themselves may be used for temperature control by selectively switching them on to maintain their temperature within a specified range. Alternatively, compact resistive heaters may be positioned proximate the laser diodes to control the temperature of the laser diodes during operation. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Application
    Filed: January 23, 2019
    Publication date: July 25, 2019
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar, John Domm
  • Publication number: 20190196195
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 27, 2019
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar
  • Publication number: 20190199058
    Abstract: Systems, devices, and methods of manufacturing optical engines and laser projectors that are well-suited for use in wearable heads-up displays (WHUDs) are described. Generally, the optical engines of the present disclosure integrate a plurality of laser diodes (e.g., 3 laser diodes, 4 laser diodes) within a single, hermetically or partially hermetically sealed, encapsulated package. Photonic integrated circuits having grating couplers thereon may be used to wavelength multiplex beams of light emitted by the plurality of laser diodes into a coaxially superimposed aggregate beam. Such optical engines may have various advantages over existing designs including, for example, smaller volumes, better manufacturability, faster modulation speed, etc. WHUDs that employ such optical engines and laser projectors are also described.
    Type: Application
    Filed: December 11, 2018
    Publication date: June 27, 2019
    Inventors: Jörg Pierer, Rony Jose James, Stefan Mohrdiek, Douglas R. Dykaar