Patents by Inventor Dragan Pikula

Dragan Pikula has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927773
    Abstract: A liquid lens comprising: a lens body including a cavity, a control electrode, and a common electrode; a first liquid disposed within the cavity and in electrical communication with the common electrode; a second liquid disposed within the cavity; an insulating layer in contact with the first liquid and the second liquid and separating the first liquid and the second liquid from the control electrode; and a driver driving a voltage differential across the common electrode and the control electrode, with the first liquid resisting current flow between the common electrode and the control electrode and thereby raising a temperature of the first liquid from a current temperature to a predetermined temperature, which is higher than the current temperature. The driver raises the temperature of the first liquid from the current temperature to the predetermined temperature by increasing a frequency of a voltage waveform of the voltage differential.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: March 12, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ian Armour McKay, Dragan Pikula, Dean Michael Thelen
  • Publication number: 20240060851
    Abstract: A method, system, and computer program product for determining a core-to-ferrule offset of a ferrule for a fiber optic connector. A reference ferrule is physically aligned with a core imager by positioning the reference ferrule so that edges of the reference ferrule in a plurality of profile images are aligned with fiducial markers in the images. The reference ferrule is incrementally rotated about its longitudinal center access, a core image captured at each rotational angle, and a reference core-to-ferrule offset determined based on the core images. A test ferrule is physically aligned with the core imager by positioning the test ferrule so that edges of the test ferule are aligned with the edges of the reference ferrule in a plurality of profile images. The core-to-ferrule offset of the test ferrule is then determined based on an offset between the test and reference cores in a composite core image.
    Type: Application
    Filed: November 2, 2023
    Publication date: February 22, 2024
    Inventors: David Matthew Berg, Christine Cecala, Sterling Michael Clarke, Richard Hagan, Stefan Wolfgang Kramel, David Andrew Pastel, Dragan Pikula, Michael Brian Webb, Elvis Alberto Zambrano
  • Patent number: 11822100
    Abstract: Control systems for liquid lenses can use feedback control using one or more measured parameters indicative of a position of the fluid interface in the liquid lens. Capacitance between a fluid and an electrode in the liquid lens can vary depending on the position of the fluid interface. Current mirrors can be used for making measurements indicative of the capacitance and/or the fluid interface position. The liquid lens can be calibrated using the measurements indicative of capacitance and/or fluid interface position as the voltage is driven across an operational range. A control system can use pulse width modulation (PWM) for driving a liquid lens, and a carrier frequency for the PWM signals can be varied to control power consumption in the liquid lens. The slew rate can be adjustable to control power consumption in the liquid lens.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: November 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 11662568
    Abstract: A liquid lens system includes first and second liquids disposed within a cavity. An interface between the first and second liquids defines a variable lens. A common electrode is in electrical communication with the first liquid. A driving electrode is disposed on a sidewall of the cavity and insulated from the first and second liquids. A controller supplies a common voltage to the common electrode and a driving voltage to the driving electrode. A voltage differential between the common voltage and the driving voltage is based at least in part on at least one of: (a) a first reference capacitance of a first reference electrode pair disposed within the first portion of the cavity and insulated from the first liquid or (b) a second reference capacitance of a second reference electrode pair disposed within the second portion of the cavity and insulated from the first liquid and the second liquid.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: May 30, 2023
    Assignee: Corning Incorporated
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Ian Armour McKay, Dragan Pikula, Thomas M Wynne
  • Patent number: 11567242
    Abstract: A liquid lens can be coupled to ground, such as to impede charge from building up in the liquid lens during operation thereof. For example, an electrode that is in electrical communication with a conductive fluid of the liquid lens can be coupled to ground. A switch can be used to selectively couple the liquid lens to ground, such as for discharging the liquid lens. An electrode can be selectively coupled to ground and to driving signals using a switch. In some cases, drive signals can be provided to electrodes other than the grounded electrode for driving the liquid lens. In some cases, the liquid lens can be driven using feedback control based on one or more measured parameters indicative capacitance between a fluid and one or more electrodes in the liquid lens.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: January 31, 2023
    Assignee: Corning Incorporated/LG Innotek Co. LTD.
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Robert Bruce Lyon, Ian Armour McKay, Dragan Pikula, Daniel Ohen Ricketts
  • Patent number: 11474284
    Abstract: Control systems for liquid lenses can use feedback control using one or more measured parameters indicative of a position of the fluid interface in the liquid lens. Capacitance between a fluid and an electrode in the liquid lens can vary depending on the position of the fluid interface. Current mirrors can be used for making measurements indicative of the capacitance and/or the fluid interface position. The liquid lens can be calibrated using the measurements indicative of capacitance and/or fluid interface position as the voltage is driven across an operational range. A control system can use pulse width modulation (PWM) for driving a liquid lens, and a carrier frequency for the PWM signals can be varied to control power consumption in the liquid lens. The slew rate can be adjustable to control power consumption in the liquid lens.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: October 18, 2022
    Assignee: Corning Incorporated
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20220317343
    Abstract: A variable focus lens system can include a variable focus lens, one or more electrodes, a signal generator configured to supply voltage to the one or more electrodes to vary the focal length of the variable focus lens, and a controller configured to apply a voltage to the one or more electrodes and receive information indicative of a capacitance that results from the applied voltage. The controller can be configured to determine a temperature of the variable focus lens based at least in part on the capacitance or applied voltage. The variable focus lens system can include a temperature sensor, and the controller can be configured to receive temperature information from the temperature sensor and calibrate the temperature sensor based at least in part on the received temperature information, the applied voltage, and the received capacitance information.
    Type: Application
    Filed: June 1, 2020
    Publication date: October 6, 2022
    Inventors: Raymond Miller Karam, Dragan Pikula, Farzaneh Rasti Najafabadi, Daniel Ohen Ricketts
  • Publication number: 20220057546
    Abstract: A liquid lens can include a first substrate with an interior recess. A second substrate with a bore can be bonded to the first substrate, whereby the interior recess of the first substrate and the bore of the second substrate cooperatively define at least a portion of a cavity of the liquid lens. A first liquid and a second liquid can be disposed in the cavity. A variable interface can be disposed between the first liquid and the second liquid, thereby forming a variable lens. The interior recess of the first substrate can be positioned outside of a sidewall projection of a sidewall surface of the cavity through the first substrate.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: James Lewis Dale, Raymond Miller Karam, Paul Ewing Langenbacher, Dragan Pikula, Daniel Ohen Ricketts, Ernesto Sanchez, JR., ChuanChe Wang, Jia Zhang
  • Publication number: 20210124094
    Abstract: A liquid lens comprising: a lens body including a cavity, a control electrode, and a common electrode; a first liquid disposed within the cavity and in electrical communication with the common electrode; a second liquid disposed within the cavity; an insulating layer in contact with the first liquid and the second liquid and separating the first liquid and the second liquid from the control electrode; and a driver driving a voltage differential across the common electrode and the control electrode, with the first liquid resisting current flow between the common electrode and the control electrode and thereby raising a temperature of the first liquid from a current temperature to a predetermined temperature, which is higher than the current temperature. The driver raises the temperature of the first liquid from the current temperature to the predetermined temperature by increasing a frequency of a voltage waveform of the voltage differential.
    Type: Application
    Filed: March 19, 2019
    Publication date: April 29, 2021
    Inventors: Ian Armour McKay, Dragan Pikula, Dean Michael Thelen
  • Publication number: 20200319380
    Abstract: A liquid lens can be coupled to ground, such as to impede charge from building up in the liquid lens during operation thereof. For example, an electrode that is in electrical communication with a conductive fluid of the liquid lens can be coupled to ground. A switch can be used to selectively couple the liquid lens to ground, such as for discharging the liquid lens. An electrode can be selectively coupled to ground and to driving signals using a switch. In some cases, drive signals can be provided to electrodes other than the grounded electrode for driving the liquid lens. In some cases, the liquid lens can be driven using feedback control based on one or more measured parameters indicative capacitance between a fluid and one or more electrodes in the liquid lens.
    Type: Application
    Filed: November 15, 2018
    Publication date: October 8, 2020
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Robert Bruce Lyon, Ian Armour McKay, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20200271917
    Abstract: A liquid lens system includes first and second liquids disposed within a cavity. An interface between the first and second liquids defines a variable lens. A common electrode is in electrical communication with the first liquid. A driving electrode is disposed on a sidewall of the cavity and insulated from the first and second liquids. A controller supplies a common voltage to the common electrode and a driving voltage to the driving electrode. A voltage differential between the common voltage and the driving voltage is based at least in part on at least one of: (a) a first reference capacitance of a first reference electrode pair disposed within the first portion of the cavity and insulated from the first liquid or (b) a second reference capacitance of a second reference electrode pair disposed within the second portion of the cavity and insulated from the first liquid and the second liquid.
    Type: Application
    Filed: November 14, 2018
    Publication date: August 27, 2020
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Ian Armour McKay, Dragan Pikula, Thomas M Wynne
  • Publication number: 20200096678
    Abstract: Control systems for liquid lenses can use feedback control using one or more measured parameters indicative of a position of the fluid interface in the liquid lens. Capacitance between a fluid and an electrode in the liquid lens can vary depending on the position of the fluid interface. Current mirrors can be used for making measurements indicative of the capacitance and/or the fluid interface position. The liquid lens can be calibrated using the measurements indicative of capacitance and/or fluid interface position as the voltage is driven across an operational range. A control system can use pulse width modulation (PWM) for driving a liquid lens, and a carrier frequency for the PWM signals can be varied to control power consumption in the liquid lens. The slew rate can be adjustable to control power consumption in the liquid lens.
    Type: Application
    Filed: April 5, 2018
    Publication date: March 26, 2020
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20200096679
    Abstract: Control systems for liquid lenses can use feedback control using one or more measured parameters indicative of a position of the fluid interface in the liquid lens. Capacitance between a fluid and an electrode in the liquid lens can vary depending on the position of the fluid interface. Current mirrors can be used for making measurements indicative of the capacitance and/or the fluid interface position. The liquid lens can be calibrated using the measurements indicative of capacitance and/or fluid interface position as the voltage is driven across an operational range. A control system can use pulse width modulation (PWM) for driving a liquid lens, and a carrier frequency for the PWM signals can be varied to control power consumption in the liquid lens. The slew rate can be adjustable to control power consumption in the liquid lens.
    Type: Application
    Filed: April 5, 2018
    Publication date: March 26, 2020
    Inventors: Jann Paul Kaminski, Raymond Miller Karam, Dragan Pikula, Daniel Ohen Ricketts
  • Publication number: 20190039936
    Abstract: A glass sheet thermally strengthened such that at the first major surface is under compressive stress; the sheet having an a characteristic 2D autocorrelation matrix c(x,y) given by c(x,y)=F?1(F(g)·F?(g)) where F is a 2D Fourier transform and ? represents a complex conjugate operation and g is a high pass filtered data array given by g(x,y)=F?1(F(f(1?F(h)) where h is a spatial 2D low pass filter array and f is a square data array of Shear 0 and Shear 45 data, taken over an area away from any birefringence edge effects on the sheet, wherein an autocorrelation peak maximum width of the matrix c(x,y) at 40% of peak height, for the c(x,y) matrices from both the Shear 0 and Shear 45 data, is between 1 and 5 mm.
    Type: Application
    Filed: January 31, 2017
    Publication date: February 7, 2019
    Inventors: Jeffrey John Domey, Dragan Pikula, Robert Wendell Sharps
  • Patent number: 9807722
    Abstract: Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
    Type: Grant
    Filed: June 10, 2016
    Date of Patent: October 31, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dragan Pikula, Michael Sauer, Gerald B. Schmidt
  • Patent number: 9749750
    Abstract: A method of minimizing edge reflections of vibrational waves in a flat panel speaker assembly for a stereo device by characterizing the impulse response of the flat panel and associated components in response to a test signal to produce a cancellation signal, and applying the cancellation signal for each stereo channel to the opposing stereo channel.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: August 29, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Dmitri Vladislavovich Kuksenkov, Dragan Pikula, Guangxin Tang
  • Publication number: 20170134860
    Abstract: A method of minimizing edge reflections of vibrational waves in a flat panel speaker assembly for a stereo device by characterizing the impulse response of the flat panel and associated components in response to a test signal to produce a cancellation signal, and applying the cancellation signal for each stereo channel to the opposing stereo channel.
    Type: Application
    Filed: June 30, 2015
    Publication date: May 11, 2017
    Inventors: Dmitri Vladislavovich Kuksenkov, Dragan Pikula, Guangxin Tang
  • Patent number: 9557846
    Abstract: A hybrid touch system that utilizes a combination of a capacitive touch system for position sensing and an optical touch system for pressure sensing is disclosed. The optical touch system includes a transparent sheet having a surface, at least one light source and at least one detector which are operably arranged relative to the transparent sheet to transmit light through the sheet and to detect the transmitted light. Performing position sensing using the capacitive touch system simplifies the pressure-sensing optical touch system.
    Type: Grant
    Filed: October 2, 2013
    Date of Patent: January 31, 2017
    Assignee: Corning Incorporated
    Inventors: Izhak Baharav, Jeffrey Stapleton King, Dragan Pikula
  • Publication number: 20160286509
    Abstract: Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
    Type: Application
    Filed: June 10, 2016
    Publication date: September 29, 2016
    Inventors: Igor Berlin, Dragan Pikula, Michael Sauer, Gerald B. Schmidt
  • Patent number: 9369222
    Abstract: Components, systems, and methods for determining propagation delay of communications in distributed antenna systems are disclosed. The propagation delay of communications signals distributed in the distributed antenna systems is determined. If desired, the propagation delay(s) can be determined on a per remote antenna unit basis for the distributed antenna systems. The propagation delay(s) can provided by the distributed antenna systems to a network or other system to be taken into consideration for communications services or operations that are based on communications signal delay. As another non-limiting example, propagation delay can be determined and controlled for each remote antenna unit to uniquely distinguish the remote antenna units. In this manner, the location of a client device communicating with a remote antenna unit can be determined within the communication range of the remote antenna unit.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: June 14, 2016
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, Dragan Pikula, Michael Sauer, Gerald B. Schmidt