Patents by Inventor Dubravko I. Babic

Dubravko I. Babic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8796843
    Abstract: High-power and high-frequency semiconductor devices require high signal integrity and high thermal conductance assembly technologies and packages. In particular, wide-gap-semiconductor devices on diamond benefit from spatially separate electrical and thermal connections. This application discloses assembly and package architectures that offer high signal integrity and high thermal conductance.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: August 5, 2014
    Assignee: Element Six Technologies US Corporation
    Inventors: Dubravko I. Babic, Quentin E. Diduck, Alex Schreiber
  • Publication number: 20030156617
    Abstract: A light source for generating and coupling light from a first wavelength into an optical fiber. The light source includes an output laser having a first optical cavity that includes a bottom mirror located outside of the optical fiber, and a top mirror that includes a reflector located within the optical fiber. An active region between the top and bottom mirrors generates light of the first wavelength, preferably through optical pumping at a second wavelength. The reflector is preferably a Bragg reflector and may include a mechanism for altering the wavelength of the light reflected thereby as well as the distance between the top and bottom mirrors. The pumping light is preferably generated by a pumping laser that includes a second electrically pumped optical cavity having a top mirror that is electrically connected to the bottom mirror of the first optical cavity.
    Type: Application
    Filed: February 20, 2002
    Publication date: August 21, 2003
    Inventors: Douglas M. Baney, Dubravko I. Babic, Wayne V. Sorin, Jonathan Lacey
  • Patent number: 6553051
    Abstract: An optical assembly includes an optical subassembly containing a prefabricated long wavelength laser optically coupled to a prefabricated short wavelength laser located in a housing. The optical subassembly may be removably installed in the housing in which the short wavelength laser is contained. The short wavelength laser optically pumps the long wavelength laser resulting in a long wavelength laser output. The optical subassembly allows the independent fabrication, optimization and testing of the short wavelength laser and the long wavelength laser.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: April 22, 2003
    Assignee: Agilent Technologies, Inc.
    Inventors: Michael R. T. Tan, Scott W. Corzine, Dubravko I. Babic, Albert T. Yuen
  • Patent number: 6483862
    Abstract: A light emitting device and photodetector combination having a structure in which the layer of the photodetector that contacts the light emitting device is separated from the light emitting device by a native semiconductor oxide layer that is both insulating and has a refractive index lower than that of the light emitting device and the photodetector. This configuration results in a light emitting device and photodetector structure that minimizes the capture of the spontaneous emission light output from the light emitting device by the photodetector while electrically isolating the light emitting device from the photodetector. The electrical isolation of the light emitting device from the photodetector results in a four terminal device in which the light emitting device and photodetector may be independently biased, and can therefore be operated at a very low bias voltage.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: November 19, 2002
    Assignee: Agilent Technologies, Inc.
    Inventors: Lewis B. Aronson, Michael R. T. Tan, Scott W. Corzine, Dubravko I. Babic
  • Patent number: 6277696
    Abstract: The present invention provides a vertical cavity surface emitting laser having high gain and high reflectivity in the desired wavelength range and good thermal and electrical conductivity. The laser structure is comprised of a first mirror region, a second mirror region, and an active region positioned between the first and second mirror regions. Unlike, prior VCSELs, the active region is fused to both the first mirror region and the second mirror region. This allows the laser designer to optimize laser performance for the desired wavelength range by allowing the choice of different materials for the first mirror region, the second mirror region, and the active region.
    Type: Grant
    Filed: November 15, 1996
    Date of Patent: August 21, 2001
    Assignee: Hewlett-Packard Company
    Inventors: Kent W. Carey, Long Yang, John E. Bowers, Dubravko I. Babic, James J. Dudley
  • Patent number: 6252896
    Abstract: An optically pumped vertical-cavity surface-emitting laser (VCSEL) device and a method of fabricating the device utilize two separate substrates that perform a filtering operation to selectively transmit only light having a long peak wavelength that is generated by the device. The optically pumped VCSEL device is a self-pumped device that can generate the pump light to drive the device to emit output laser light having a long peak wavelength. The optically pumped VCSEL device includes a short-wavelength VCSEL formed on one of the two substrates and a long-wavelength VCSEL formed on the other substrate. The short-wavelength VCSEL is a current-driven VCSEL that generates short-wavelength light to drive (i.e., optically pump) the long-wavelength VCSEL. The short-wavelength VCSEL and the long-wavelength VCSEL are bonded together such that the two substrates are separated by the two VCSELs.
    Type: Grant
    Filed: March 5, 1999
    Date of Patent: June 26, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Michael R. T. Tan, Dubravko I. Babic, Scott W. Corzine, Tirmula R. Ranganath, Shih-Yuan Wang, Wayne Bi
  • Patent number: 6236671
    Abstract: A light emitting device and heterojunction phototransistor combination having a structure where a p-type material terminal of a laser is common with an emitter of a PNP heterojunction phototransistor. This configuration results in a light emitting device and heterojunction phototransistor structure that has a drastically reduced bias voltage requirement and that allows independent biasing of the laser and the heterojunction phototransistor.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: May 22, 2001
    Assignee: Agilent Technologies, Inc.
    Inventor: Dubravko I. Babic
  • Patent number: 6222202
    Abstract: A light emitting device and photodetector combination having a structure where the layer of the photodetector that contacts the light emitting device has a semiconductor conductivity type polarity opposite that of the light emitting device. This configuration results in a light emitting device and photodetector structure that has a very low bias voltage requirement. Additionally, by shunting any current flowing through the junction formed where the light emitting device meets the photodetector, the bias voltage requirement is further reduced.
    Type: Grant
    Filed: October 6, 1998
    Date of Patent: April 24, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Dubravko I. Babic, Scott W. Corzine
  • Patent number: 6188711
    Abstract: A Vertical Cavity Surface-Emitting Laser (VCSEL) assembly in which the polarization is locked to a specified direction that is the same for all VCSELs. A VCSEL according to the present invention includes a VCSEL having a top mirror region, a bottom mirror region, a light generation region between the top and bottom mirror regions, a conducting substrate and a bottom electrode. The bottom mirror region is sandwiched between the conducting substrate and the light generation region, and the conducting substrate is sandwiched between the bottom electrode and the bottom mirror region. The assembly also includes a mounting substrate having top and bottom surfaces, the VCSEL being mechanically coupled to the mounting substrate. The mounting substrate includes a means for defining a first axis. The assembly includes a means for causing the mounting substrate to flex about the first axis thereby inducing a strain in the light generation region which locks the polarization into a mode determined by the first axis.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: February 13, 2001
    Assignee: Agilent Technologies, Inc.
    Inventors: Scott W. Corzine, Michael R. T. Tan, Albert T. Yuen, Dubravko I. Babic
  • Patent number: 5838715
    Abstract: A VCSEL 101 comprising an optical cavity having an optical loss and a loss-determining element 117 coupled to the optical cavity. The loss-determining element 117 progressively increases the optical loss of the optical cavity with increasing lateral distance from the optical axis 105. The optical cavity includes a first mirror region 111, a second mirror region 107, a plane light-generating region 125 sandwiched between the first mirror region 111 and the second mirror region 107, perpendicular to the optical axis 105, and an element 113 that defines the lateral extent of the optical cavity in the plane of the light-generating region 125. The first mirror region 111 and the second mirror region 107 are both conductive and have opposite conductivity modes.
    Type: Grant
    Filed: June 20, 1996
    Date of Patent: November 17, 1998
    Assignee: Hewlett-Packard Company
    Inventors: Scott W. Corzine, Dubravko I. Babic, Richard P. Schneider, Jr., Michael R. Tan, Shih-Yuan Wang