Patents by Inventor Dyson H. Tai

Dyson H. Tai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160227147
    Abstract: A back side illuminated image sensor includes a pixel array including semiconductor material, and image sensor circuitry disposed on a front side of the semiconductor material to control operation of the pixel array. A first pixel includes a first doped region disposed proximate to a back side of the semiconductor material and extends into the semiconductor material a first depth to reach the image sensor circuitry. A second pixel with a second doped region is disposed proximate to the back side of the semiconductor material and extends into the semiconductor material a second depth which is less than the first depth. A third doped region is disposed between the second doped region and the image sensor circuitry front side of the semiconductor material. The third doped region is electrically isolated from the first doped region and the second doped region.
    Type: Application
    Filed: February 3, 2015
    Publication date: August 4, 2016
    Inventors: Gang Chen, Dominic Massetti, Chih-Wei Hsiung, Arvind Kumar, Yuanwei Zheng, Duli Mao, Dyson H. Tai
  • Publication number: 20160218132
    Abstract: A storage transistor with a storage region is disposed in a semiconductor material. A gate electrode is disposed in a bottom side of an interlayer proximate to the storage region, and a dielectric layer is disposed between the storage region and the gate electrode. An optical isolation structure is disposed in the interlayer and the optical isolation structure extends from a top side of the interlayer to the gate electrode. The optical isolation structure is also adjoining a perimeter of the gate electrode and contacts the gate electrode. A capping layer is disposed proximate to the top side of the interlayer and the capping layer caps a volume encircled by the optical isolation structure.
    Type: Application
    Filed: January 27, 2015
    Publication date: July 28, 2016
    Inventors: Yuanwei Zheng, Xianmin Yi, Gang Chen, Duli Mao, Dyson H. Tai
  • Publication number: 20160211295
    Abstract: A back side illuminated image sensor includes a semiconductor material having a front side and a back side. The semiconductor material is disposed between image sensor circuitry and a light filter array. The image sensor circuitry is disposed on the front side, and the light filter array is disposed proximate to the back side. The image sensor includes a first pixel with a first doped region that extends from the image sensor circuitry into the semiconductor material a first depth. The first pixel also includes a second doped region that is disposed between the back side of the semiconductor material and the first doped region. The second doped region is electrically isolated from the first doped region. A second pixel with a third doped region is also included in the image sensor. The third doped region extends from the image sensor circuitry into the semiconductor material a second depth.
    Type: Application
    Filed: January 20, 2015
    Publication date: July 21, 2016
    Inventors: Gang Chen, Duli Mao, Yuanwei Zheng, Chih-Wei Hsiung, Arvind Kumar, Dyson H. Tai
  • Patent number: 9379159
    Abstract: A method of fabricating an image sensor includes forming a pixel array in an imaging region of a semiconductor substrate and forming a trench in a peripheral region of the semiconductor substrate after forming the pixel array. The peripheral region is on a perimeter of the imaging region. The trench is filled with an insulating material. An interconnect layer is formed after filling the trench with insulating material. A first wafer is bonded to a second wafer. The first wafer includes the interconnect layer and the semiconductor substrate. A backside of the semiconductor substrate is thinned to expose the insulating material. A via cavity is formed through the insulating material. The via cavity extends down to a second interconnect layer of the second wafer. The via cavity is filled with a conductive material to form a via. The insulating material insulates the conductive material from the semiconductor substrate.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: June 28, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yin Qian, Dyson H. Tai, Jin Li, Chen-Wei Lu, Howard E. Rhodes
  • Patent number: 9360607
    Abstract: A color filter array for use on a color image sensor includes an oxide grid having sidewalls arranged to define openings in the oxide grid. Each one of the openings is to be disposed over a corresponding pixel cell of the color image sensor. Oxide support structures are disposed in an interior region of each opening in the oxide grid over a corresponding pixel cell of the color image sensor. The openings in the oxide grid are filled with color filter material of a corresponding color filter. A surface tension between each oxide support structure and the surrounding color filter material of the color filter is adapted to provide uniform thickness for the color filters within the corresponding openings in the oxide grid.
    Type: Grant
    Filed: January 15, 2015
    Date of Patent: June 7, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Dyson H. Tai, Wei Zheng, Yin Qian, Chen-Wei Lu, Jin Li
  • Patent number: 9344658
    Abstract: A pixel cell includes a photodiode disposed within a first semiconductor chip for accumulating an image charge in response to light incident upon the photodiode. A transfer transistor is disposed within the first semiconductor chip and coupled to the photodiode to transfer the image charge from the photodiode. A bias voltage generation circuit disposed within a second semiconductor chip for generating a bias voltage. The bias voltage generation circuit is coupled to the first semiconductor chip to bias the photodiode with the bias voltage. The bias voltage is negative with respect to a ground voltage of the second semiconductor chip. A floating diffusion is disposed within the second semiconductor chip. The transfer transistor is coupled to transfer the image charge from the photodiode on the first semiconductor chip to the floating diffusion on the second semiconductor chip.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: May 17, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Tiejun Dai, Rui Wang, Dyson H. Tai, Sohei Manabe
  • Patent number: 9331115
    Abstract: An image sensor includes a plurality of photosensitive devices arranged in a semiconductor substrate. A planar layer is disposed over the plurality of photosensitive devices in the semiconductor substrate. A plurality of first microlenses comprised of a lens material is arranged in first lens regions on the planar layer. A plurality of lens barriers comprised of the lens material is arranged on the planar layer to provide boundaries that define second lens regions on the planar layer. A plurality of second microlenses comprised of the lens material is formed within the boundaries provided by the plurality of lens barriers that define the second lens regions on the planar layer. The plurality of lens barriers are integrated with respective second microlenses after a reflow process of the plurality of second microlenses.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: May 3, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jin Li, Yin Qian, Gang Chen, Dyson H. Tai, Dajiang Yang
  • Publication number: 20160111468
    Abstract: A method of fabricating an image sensor includes forming a pixel array in an imaging region of a semiconductor substrate and forming a trench in a peripheral region of the semiconductor substrate after forming the pixel array. The peripheral region is on a perimeter of the imaging region. The trench is filled with an insulating material. An interconnect layer is formed after filling the trench with insulating material. A first wafer is bonded to a second wafer. The first wafer includes the interconnect layer and the semiconductor substrate. A backside of the semiconductor substrate is thinned to expose the insulating material. A via cavity is formed through the insulating material. The via cavity extends down to a second interconnect layer of the second wafer. The via cavity is filled with a conductive material to form a via. The insulating material insulates the conductive material from the semiconductor substrate.
    Type: Application
    Filed: October 15, 2014
    Publication date: April 21, 2016
    Inventors: Yin Qian, Dyson H. Tai, Jin Li, Chen-Wei Lu, Howard E. Rhodes
  • Patent number: 9305949
    Abstract: An image sensor pixel for use in a high dynamic range image sensor includes a first photodiode, a plurality of photodiodes, a shared floating diffusion region, a first transfer gate, and a second transfer gate. The first photodiode is disposed in a semiconductor material. The first photodiode has a first light exposure area and a first doping concentration. The plurality of photodiodes is also disposed in the semiconductor material. Each photodiode in the plurality of photodiodes has the first light exposure area and the first doping concentration. The first transfer gate is coupled to transfer first image charge from the first photodiode to the shared floating diffusion region. The second transfer gate is coupled to transfer distributed image charge from each photodiode in the plurality of photodiodes to the shared floating diffusion region.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: April 5, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Gang Chen, Duli Mao, Dajiang Yang, Zhibin Xiong, Dyson H. Tai
  • Publication number: 20160086999
    Abstract: An image sensor includes a plurality of photodiodes disposed proximate to a frontside of a first semiconductor layer to accumulate image charge in response to light directed into the frontside of the first semiconductor layer. A plurality of pinning wells is disposed in the first semiconductor layer. The pinning wells separate individual photodiodes included in the plurality of photodiodes. A plurality of dielectric layers is disposed proximate to a backside of the first semiconductor layer. The dielectric layers are tuned such that light having a wavelength substantially equal to a first wavelength included in the light directed into the frontside of the first semiconductor layer is reflected from the dielectric layers back to a respective one of the plurality of photodiodes disposed proximate to the frontside of the first semiconductor layer.
    Type: Application
    Filed: September 24, 2014
    Publication date: March 24, 2016
    Inventors: Duli Mao, Vincent Venezia, Gang Chen, Dajiang Yang, Dyson H. Tai
  • Publication number: 20160088265
    Abstract: A color filter array includes a plurality of tiled minimal repeating units, each minimal repeating unit comprising an M×N set of individual filters. Each minimal repeating unit includes a plurality of imaging filters including individual filters having at least first, second, and third photoresponses, and at least one reference filter having a reference photoresponse, wherein the reference filter is positioned among the imaging filters and wherein the reference photoresponse transmits substantially the crosstalk spectrum that is not filtered from light incident on the color filter array by the plurality of imaging filters. Other embodiments are disclosed and claimed.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 24, 2016
    Inventors: Chen-Wei Lu, Jin Li, Yin Qian, Dyson H. Tai
  • Publication number: 20160071892
    Abstract: An image sensor pixel including a photodiode includes a first dopant region disposed within a semiconductor layer and a second dopant region disposed above the first dopant region and within the semiconductor layer. The second dopant region contacts the first dopant region and the second dopant region is of an opposite majority charge carrier type as the first dopant region. A third dopant region is disposed above the first dopant region and within the semiconductor layer. The third dopant region is of a same majority charge carrier type as the second dopant region but has a greater concentration of free charge carriers than the second dopant region. A transfer gate is positioned to transfer photogenerated charge from the photodiode. The second dopant region extends closer to an edge of the transfer gate than the third dopant region.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 10, 2016
    Inventors: Gang Chen, Philippe Matagne, Chih-Wei Hsiung, Yuanwei Zheng, Duli Mao, Dyson H. Tai
  • Publication number: 20160037111
    Abstract: A pixel cell includes a photodiode disposed within a first semiconductor chip for accumulating an image charge in response to light incident upon the photodiode. A transfer transistor is disposed within the first semiconductor chip and coupled to the photodiode to transfer the image charge from the photodiode. A bias voltage generation circuit disposed within a second semiconductor chip for generating a bias voltage. The bias voltage generation circuit is coupled to the first semiconductor chip to bias the photodiode with the bias voltage. The bias voltage is negative with respect to a ground voltage of the second semiconductor chip. A floating diffusion is disposed within the second semiconductor chip. The transfer transistor is coupled to transfer the image charge from the photodiode on the first semiconductor chip to the floating diffusion on the second semiconductor chip.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Inventors: Tiejun Dai, Rui Wang, Dyson H. Tai, Sohei Manabe
  • Patent number: 9240431
    Abstract: An image sensor including a plurality of photodiodes disposed in a semiconductor layer and a plurality of deep trench isolation regions disposed in the semiconductor layer. The plurality of deep trench isolation regions include: (1) an oxide layer disposed on an inner surface of the plurality of deep trench isolation regions and (2) a conductive fill disposed in the plurality of deep trench isolation regions where the oxide layer is disposed between the semiconductor layer and the conductive fill. A plurality of pinning wells is also disposed in the semiconductor layer, and the plurality of pinning wells in combination with the plurality of deep trench isolation regions separate individual photodiodes in the plurality of photodiodes. A fixed charge layer is disposed on the semiconductor layer, and the plurality of deep trench isolation regions are disposed between the plurality of pinning wells and the fixed charge layer.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: January 19, 2016
    Assignee: OmniVision Technologies, Inc.
    Inventors: Yuanwei Zheng, Gang Chen, Duli Mao, Dyson H. Tai, Chih-Wei Hsiung, Arvind Kumar
  • Patent number: 9177982
    Abstract: A backside illuminated image sensor includes a semiconductor layer and a trench disposed in the semiconductor layer. The semiconductor layer has a frontside surface and a backside surface. The semiconductor layer includes a light sensing element of a pixel array disposed in a sensor array region of the semiconductor layer. The pixel array is positioned to receive external incoming light through the backside surface of the semiconductor layer. The semiconductor layer also includes a light emitting element disposed in a periphery circuit region of the semiconductor layer external to the sensor array region. The trench is disposed in the semiconductor layer between the light sensing element and the light emitting element.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: November 3, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Duli Mao, Dyson H. Tai, Vincent Venezia, Yin Qian, Gang Chen, Howard E. Rhodes
  • Publication number: 20150303235
    Abstract: A pixel cell includes a storage transistor disposed in a semiconductor substrate. The storage transistor includes a storage gate disposed over the semiconductor substrate, and a storage gate implant that is annealed and has a gradient profile in the semiconductor substrate under the storage transistor gate to store image charge accumulated by a photodiode disposed in the semiconductor substrate. A transfer transistor is disposed in the semiconductor substrate and is coupled between the photodiode and an input of the storage transistor to selectively transfer the image charge from the photodiode to the storage transistor. The transfer transistor includes a transfer gate disposed over the semiconductor substrate. An output transistor is coupled to an output of the storage transistor to selectively transfer the image charge from the storage transistor to a read out node. The output transistor includes an output gate disposed over the semiconductor substrate.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Dajiang Yang, Gang Chen, Zhenhong Fu, Duli Mao, Eric A. G. Webster, Sing-Chung Hu, Dyson H. Tai
  • Patent number: 9147704
    Abstract: A dual pixel-size color image sensor, including an imaging surface, for imaging of incident light, and a plurality of color pixels, each color pixel including (a) four large photosites, including two large first-color photosites sensitive to a first color of the incident light, and (b) four small photosites including two small first-color photosites sensitive to the first color of the incident light. The large and small first-color photosites are arranged such that connected regions of the imaging surface, not associated with large and/or small first-color photosites, are not continuous straight lines. A method for manufacturing a color filter array on an imaging surface of a dual pixel-size image sensor includes forming a first-color coating on first portions of the imaging surface to form large and small first-color photosites sensitive to a first color, wherein connected portions of the imaging surface, different from the first portions, are not continuous straight lines.
    Type: Grant
    Filed: November 11, 2013
    Date of Patent: September 29, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Jin Li, Gang Chen, Yin Qian, Dyson H. Tai
  • Publication number: 20150270302
    Abstract: An image sensor includes a plurality of photosensitive devices arranged in a semiconductor substrate. A planar layer is disposed over the plurality of photosensitive devices in the semiconductor substrate. A plurality of first microlenses comprised of a lens material is arranged in first lens regions on the planar layer. A plurality of lens barriers comprised of the lens material is arranged on the planar layer to provide boundaries that define second lens regions on the planar layer. A plurality of second microlenses comprised of the lens material is formed within the boundaries provided by the plurality of lens barriers that define the second lens regions on the planar layer. The plurality of lens barriers are integrated with respective second microlenses after a reflow process of the plurality of second microlenses.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Applicant: Omnivision Technologies, Inc.
    Inventors: Jin Li, Yin Qian, Gang Chen, Dyson H. Tai, Dajiang Yang
  • Publication number: 20150271377
    Abstract: An image sensor includes a pixel array with a plurality of pixels arranged in a semiconductor layer. A color filter array including a plurality of groupings of filters is disposed over the pixel array. Each filter is optically coupled to a corresponding one of the plurality pixels. Each one of the plurality of groupings of filters includes a first, a second, a third, and a fourth filter having a first, a second, the second, and a third color, respectively. A metal layer is disposed over the pixel array and is patterned to include a metal mesh having mesh openings with a size and pitch to block incident light having a fourth color from reaching the corresponding pixel. The metal layer is patterned to include openings without the metal mesh to allow the incident light to reach the other pixels.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Applicant: OMNIVISION TECHNOLOGIES, INC.
    Inventors: Jin Li, Yin Qian, Gang Chen, Dyson H. Tai
  • Patent number: 9123604
    Abstract: A backside illuminated image sensor includes a semiconductor layer having a back-side surface and a front-side surface. The semiconductor layer includes a pixel array region including a plurality of photodiodes configured to receive image light through the back-side surface of the semiconductor layer. The semiconductor layer also includes a peripheral circuit region including peripheral circuit elements for operating the plurality of photodiodes that borders the pixel array region. The peripheral circuit elements emit photons. The peripheral circuit region also includes a doped semiconductor region positioned to absorb the photons emitted by the peripheral circuit elements to prevent the plurality of photodiodes from receiving the photons.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: September 1, 2015
    Assignee: OmniVision Technologies, Inc.
    Inventors: Qingfei Chen, Qingwei Shan, Yin Qian, Dyson H. Tai