Patents by Inventor Edmund O. Schweitzer, III

Edmund O. Schweitzer, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9588168
    Abstract: The present disclosure relates to calculating a fault location in an electric power transmission system based on traveling waves. In one embodiment, a system consistent with the present disclosure may be configured to detect a fault in an electric power transmission system. The system may include a traveling wave detection subsystem configured to detect and measure traveling waves on a transmission line and a fault location estimation subsystem. The fault location estimation subsystem may receive from the traveling wave detection subsystem a first plurality of traveling waves on the transmission line generated during a reference event. The fault location estimation subsystem may receive from the traveling wave detection subsystem a second plurality of traveling waves generated during an unplanned event. An unmatched traveling wave in the second plurality of waves may be detected and a location of the unplanned event based on the unmatched traveling wave.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: March 7, 2017
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas
  • Patent number: 9581976
    Abstract: The present disclosure provides systems and methods for recording operating parameters of an intelligent electronic device (IED). A system may include a parameter acquisition module, a parameter storage module, and a memory management module. The parameter acquisition module may be configured to periodically obtain operating parameters of an IED at a first interval. The first interval may have a first time length to provide a first resolution of operation of the IED. The parameter storage module may be configured to store the operating parameters. The memory management module may be configured to delete, outside a first resolution period, a first portion of the operating parameters while maintaining a second portion of the operating parameters. The second portion may include operating parameters for each of a second interval. The second interval may have a second time length to provide a reduced second resolution of the operation of the IED.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: February 28, 2017
    Assignee: SCHWEITZER ENGINEERING LABORATORIES, INC.
    Inventors: Edmund O Schweitzer, III, Ronald A. Schwartz, David E Whitehead
  • Publication number: 20170012424
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 21, 2016
    Publication date: January 12, 2017
    Applicant: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Patent number: 9470748
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: October 18, 2016
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Publication number: 20160216310
    Abstract: The present disclosure relates to calculating a fault location in an electric power transmission system based on traveling waves. In one embodiment, a system consistent with the present disclosure may be configured to detect a fault in an electric power transmission system. The system may include a traveling wave detection subsystem configured to detect and measure traveling waves on a transmission line and a fault location estimation subsystem. The fault location estimation subsystem may receive from the traveling wave detection subsystem a first plurality of traveling waves on the transmission line generated during a reference event. The fault location estimation subsystem may receive from the traveling wave detection subsystem a second plurality of traveling waves generated during an unplanned event. An unmatched traveling wave in the second plurality of waves may be detected and a location of the unplanned event based on the unmatched traveling wave.
    Type: Application
    Filed: January 23, 2015
    Publication date: July 28, 2016
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas
  • Patent number: 9383735
    Abstract: Distributed controllers in an electric power delivery system obtain measurements and equipment status, calculate derived values, and determine Intelligent Electronic Device (IED) state, and share such with other distributed controllers and coordination controllers. Distributed controllers and coordination controllers further refine measurements, equipment status, derived values, and IED state. Control of the electric power delivery system is coordinated among the distributed controllers and the coordination controllers.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 5, 2016
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Gregary C. Zweigle
  • Publication number: 20160077149
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, a system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include a traveling wave differential subsystem configured to determine an operating quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may also determine a restraint quantity based on the plurality of representations of electrical conditions. The traveling wave differential subsystem may detect a traveling wave generated by the fault based on the plurality of representations. A fault detector subsystem may be configured to declare a fault based on a comparison of the operating quantity and the restraint quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 17, 2016
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, Tony J. Lee, David E. Whitehead
  • Publication number: 20160077150
    Abstract: The present disclosure pertains to systems and methods for detecting faults in an electric power delivery system. In one embodiment, system may include a data acquisition subsystem configured to receive a plurality of representations of electrical conditions. The system may also include an incremental quantities subsystem configured to calculate an incremental current quantity and an incremental voltage quantity based on the plurality of representations. A fault detection subsystem may be configured to determine a fault type based on the incremental current quantity and the incremental voltage quantity, to select an applicable loop quantity, and to declare a fault based on the applicable loop quantity, the incremental voltage quantity, and the incremental current quantity. A protective action subsystem may implement a protective action based on the declaration of the fault.
    Type: Application
    Filed: September 16, 2015
    Publication date: March 17, 2016
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Bogdan Z. Kasztenny, Veselin Skendzic, David E. Whitehead
  • Patent number: 9160158
    Abstract: Systems and methods are presented for detecting high-impedance faults (HIFs) in an electric power delivery system using a plurality of coordinated high-impedance fault detection systems. In certain embodiments, a method for HIFs may include receiving first and second current representations associated with first and second locations of the electric power delivery system respectively. Based on at least one of the first and second current representations, the occurrence of an HIF may be determined. A relative location of the HIF may be determined based on a relative amount of interharmonic content associated with an HIF included in the first and second current representations, and a protective action may be taken based on the determined relative location.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: October 13, 2015
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Daqing Hou
  • Publication number: 20150244160
    Abstract: An method for automatically testing an arc flash detection system by periodically or continually transmitting electro-optical (EO) radiation through one or more transmission cables electro-optically coupled to respective EO radiation collectors. A test EO signal may pass through the EO radiation collector to be received by an EO sensor. An attenuation of the EO signal may be determined by comparing the intensity of the transmitted EO signal to an intensity of the received EO signal. A self-test failure may be detected if the attenuation exceeds a threshold. EO signals may be transmitted according to a particular pattern (e.g., a coded signal) to allow an arc flash detection system to distinguish the test EO radiation from EO radiation indicative of an arc flash event.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 27, 2015
    Inventors: Edmund O. Schweitzer, III, Veselin Skendzic, Dhruba P. Das, Gary W. Scheer, James R. Kesler, Douglas M. Trout
  • Patent number: 9046391
    Abstract: An method for automatically testing an arc flash detection system by periodically or continually transmitting electro-optical (EO) radiation through one or more transmission cables electro-optically coupled to respective EO radiation collectors. A test EO signal may pass through the EO radiation collector to be received by an EO sensor. An attenuation of the EO signal may be determined by comparing the intensity of the transmitted EO signal to an intensity of the received EO signal. A self-test failure may be detected if the attenuation exceeds a threshold. EO signals may be transmitted according to a particular pattern (e.g., a coded signal) to allow an arc flash detection system to distinguish the test EO radiation from EO radiation indicative of an arc flash event.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 2, 2015
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Veselin Skendzic, Gary W. Scheer, James R. Kesler, Douglas M. Trout, Dhruba P. Das
  • Patent number: 8990036
    Abstract: Fault location using traveling waves in an electric power delivery system according to the embodiments herein uses line parameters that are adjusted using traveling wave reflections from known discontinuities in the electric power delivery system. The arrival times of a traveling wave and a reflection of the traveling wave from a known discontinuity may be used to adjust parameters of the electric power delivery system such as, for example, line length. The adjusted parameter can then be used to more accurately calculate the location of the fault using the traveling waves.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: March 24, 2015
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081234
    Abstract: Fault location using traveling waves in an electric power delivery system according to the embodiments herein uses line parameters that are adjusted using traveling wave reflections from known discontinuities in the electric power delivery system. The arrival times of a traveling wave and a reflection of the traveling wave from a known discontinuity may be used to adjust parameters of the electric power delivery system such as, for example, line length. The adjusted parameter can then be used to more accurately calculate the location of the fault using the traveling waves.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081235
    Abstract: A location of a fault in an electric power delivery system may be detected using traveling waves instigated by the fault. The time of arrival of the traveling wave may be calculated using the peak of the traveling wave. To determine the time of arrival of the peak of the traveling wave, estimates may be made of the time of arrival, and a parabola may be fit to filtered measurements before and after the estimated peak. The maximum of the parabola may be the time of arrival of the traveling wave. Dispersion of the traveling wave may also be corrected using an initial location of the fault and a known rate of dispersion of the electric power delivery system. Time stamps may be corrected using the calculated dispersion of the traveling wave.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Tony J. Lee, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Publication number: 20150081236
    Abstract: Electric power delivery system fault location systems and methods as disclosed herein include validation of the received traveling wave fault measurements. Validation may include estimating a location of the fault using an impedance-based fault location calculation. Time windows of expected arrival times of traveling waves based on the estimated fault location and known parameters of the line may then be established. Arrival times of traveling waves may then be compared against the time windows. If the traveling waves arrive within a time window, then the traveling waves may be used to calculate the location of the fault.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 19, 2015
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Armando Guzman-Casillas, Veselin Skendzic, Bogdan Z. Kasztenny, David E. Whitehead
  • Patent number: 8793767
    Abstract: The present disclosure provides for selectively enabling a primary communication channel upon receipt of enablement instructions received via a secondary communication channel. In some embodiments, a first intelligent electronic device (IED) may be connected to a second IED via a primary communication channel. In various embodiments, the primary communication channel may be selectively and/or temporarily enabled by transmitting an enablement instruction via a secondary communication channel. The secondary communication channel may be relatively more secure than the primary communication channel. In some embodiments, the secondary communication channel may also connect the first and second IEDs. Accordingly, the first IED may transmit an enablement instruction to the second IED in order to temporarily enable communication via the primary communication channel between the first and second IEDs.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: July 29, 2014
    Assignee: Schweitzer Engineering Laboratories Inc
    Inventors: Edmund O. Schweitzer, III, David E. Whitehead, Rhett Smith, Mark Weber
  • Patent number: 8781766
    Abstract: Disclosed herein are various embodiments of systems and methods for calculating a fault location in electric power delivery system based on a traveling wave created by an electrical fault in the electric power delivery system. According to one embodiment, an intelligent electronic device may be configured to detect a transient traveling wave caused by an electrical fault. A first traveling wave value of the transient traveling wave may be determined and a corresponding first time associated with the first traveling wave may be determined. The IED may receive a second time associated with a second traveling wave value of the transient traveling wave detected by a remote IED. The distance to the remote IED may be known. An estimated fault location may be generated based on the time difference between the first time and the second time. Additional methods of calculating the fault location may also be employed.
    Type: Grant
    Filed: November 12, 2013
    Date of Patent: July 15, 2014
    Assignee: Schweitzer Engineering Laboratories, Inc.
    Inventors: Edmund O. Schweitzer, III, Armando Guzman-Casillas, Veselin Skendzic, Mangaoathirao Venkata Mynam
  • Publication number: 20140128999
    Abstract: The present disclosure provides systems and methods for recording operating parameters of an intelligent electronic device (IED). A system may include a parameter acquisition module, a parameter storage module, and a memory management module. The parameter acquisition module may be configured to periodically obtain operating parameters of an IED at a first interval. The first interval may have a first time length to provide a first resolution of operation of the IED. The parameter storage module may be configured to store the operating parameters. The memory management module may be configured to delete, outside a first resolution period, a first portion of the operating parameters while maintaining a second portion of the operating parameters. The second portion may include operating parameters for each of a second interval. The second interval may have a second time length to provide a reduced second resolution of the operation of the IED.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Applicant: SCHWEITZER ENGINEERING LABORATORIES, INC.
    Inventors: Edmund O Schweitzer, III, Ron Schwartz, David E Whitehead
  • Patent number: 8706309
    Abstract: Disclosed are systems and methods for calculating load models and associated tunable parameters that may be used to describe the behavior of loads connected to an electric power distribution system. The load models may be utilized to predict variations in demand caused by changes in the supply voltage, and may be utilized in determining an optimized control strategy based on load dynamics. Any action which causes a disruption to the electric power distribution system may provide information regarding the composition or dynamics of connected loads. Such actions may be referred to as modeling events. Modeling events may occur with some frequency in electric power distribution systems, and accordingly, a number of data sets may be acquired under a variety of conditions and at a variety of times. Load models may include static load models, dynamic load models, or a combination of static and dynamic load models.
    Type: Grant
    Filed: April 10, 2010
    Date of Patent: April 22, 2014
    Assignee: Schweitzer Engineering Laboratories Inc
    Inventors: Edmund O. Schweitzer, III, Marcos A. Donolo, David E. Whitehead
  • Publication number: 20140104738
    Abstract: Systems and methods are presented for detecting high-impedance faults (HIFs) in an electric power delivery system using a plurality of coordinated high-impedance fault detection systems. In certain embodiments, a method for HIFs may include receiving first and second current representations associated with first and second locations of the electric power delivery system respectively. Based on at least one of the first and second current representations, the occurrence of an HIF may be determined. A relative location of the HIF may be determined based on a relative amount of interharmonic content associated with an HIF included in the first and second current representations, and a protective action may be taken based on the determined relative location.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 17, 2014
    Applicant: SCHWEITZER ENGINEERING LABORATORIES, INC.
    Inventors: Edmund O. Schweitzer, III, Mangapathirao Venkata Mynam, Daqing Hou