Patents by Inventor Eduardo Sager

Eduardo Sager has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950784
    Abstract: Described here are devices for closing one or more tissues, and handles for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, and a handle for controlling the snare loop assembly. In some variations the snare loop assembly may comprise a retention member that may releasably connect the suture loop to the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly. In still other variations, the excess-suture management features. The handles described here may be configured to remove excess suture from a suture loop, and may also be configured to release the suture loop from the snare loop assembly.
    Type: Grant
    Filed: October 2, 2020
    Date of Patent: April 9, 2024
    Assignee: AtriCure, Inc.
    Inventors: Gregory W. Fung, Russell A. Seiber, Eduardo Sager, Jr., Gary H. Miller, Maria Garcia, Ryan Douglas Helmuth, Arnold M. Escano, Douglas Todd Ellison, William E. Cohn
  • Patent number: 11750988
    Abstract: Embodiments of the invention are directed to a microactuator including using (i) an ingress membrane mounting ring adhesive positioned on an ingress membrane mounting surface to mount an ingress membrane and (ii) a flexible encapsulation shield mounted on a support band and extending over the ingress membrane mounting ring and (iii) a first reed adhesive connecting the ingress membrane to a microactuator reed at an ingress membrane reed opening and (iv) a second reed adhesive positioned on and covering the first reed adhesive, the second reed adhesive extending from the ingress membrane to the microactuator reed.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: September 5, 2023
    Assignee: Earlens Corporation
    Inventors: Bryan Flaherty, Daniel Hallock, James Silver, Kyle Imatani, Eduardo Sager, Ketan Muni, Ohnmar Khin
  • Publication number: 20210392449
    Abstract: Embodiments of the invention are directed to a microactuator including using (i) an ingress membrane mounting ring adhesive positioned on an ingress membrane mounting surface to mount an ingress membrane and (ii) a flexible encapsulation shield mounted on a support band and extending over the ingress membrane mounting ring and (iii) a first reed adhesive connecting the ingress membrane to a microactuator reed at an ingress membrane reed opening and (iv) a second reed adhesive positioned on and covering the first reed adhesive, the second reed adhesive extending from the ingress membrane to the microactuator reed.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Bryan Flaherty, Daniel Hallock, James Silver, Kyle Imatani, Eduardo Sager, Ketan Muni, Ohnmar Khin
  • Publication number: 20210015483
    Abstract: Described here are devices for closing one or more tissues, and handles for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, and a handle for controlling the snare loop assembly. In some variations the snare loop assembly may comprise a retention member that may releasably connect the suture loop to the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly. In still other variations, the excess-suture management features. The handles described here may be configured to remove excess suture from a suture loop, and may also be configured to release the suture loop from the snare loop assembly.
    Type: Application
    Filed: October 2, 2020
    Publication date: January 21, 2021
    Inventors: Gregory W. FUNG, Russell A. SEIBER, Eduardo SAGER, JR., Gary H. MILLER, Maria GARCIA, Ryan Douglas HELMUTH, Arnold M. ESCANO, Douglas Todd ELLISON, William E. COHN
  • Patent number: 10799241
    Abstract: Described here are devices for closing one or more tissues, and handles for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, and a handle for controlling the snare loop assembly. In some variations the snare loop assembly may comprise a retention member that may releasably connect the suture loop to the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly. In still other variations, the excess-suture management features. The handles described here may be configured to remove excess suture from a suture loop, and may also be configured to release the suture loop from the snare loop assembly.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: October 13, 2020
    Assignee: SENTREHEART LLC
    Inventors: Gregory W. Fung, Russell A. Seiber, Eduardo Sager, Jr., Gary H. Miller, Maria Garcia, Ryan Douglas Helmuth, Arnold M. Escano, Douglas Todd Ellison, William E. Cohn
  • Publication number: 20160120549
    Abstract: Described here are devices for closing one or more tissues, and handles for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, and a handle for controlling the snare loop assembly. In some variations the snare loop assembly may comprise a retention member that may releasably connect the suture loop to the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly. In still other variations, the excess-suture management features. The handles described here may be configured to remove excess suture from a suture loop, and may also be configured to release the suture loop from the snare loop assembly.
    Type: Application
    Filed: October 30, 2015
    Publication date: May 5, 2016
    Inventors: Gregory W. FUNG, Russell A. SEIBER, Eduardo SAGER, JR., Gary H. MILLER, Maria GARCIA, Ryan Douglas HELMUTH, Arnold M. ESCANO, Douglas Todd ELLISON, William E. COHN
  • Patent number: 9198664
    Abstract: Described here are devices for closing one or more tissues, and handles for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, and a handle for controlling the snare loop assembly. In some variations the snare loop assembly may comprise a retention member that may releasably connect the suture loop to the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly. In still other variations, the excess-suture management features. The handles described here may be configured to remove excess suture from a suture loop, and may also be configured to release the suture loop from the snare loop assembly.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: December 1, 2015
    Assignee: SentreHEART, Inc.
    Inventors: Gregory W. Fung, Russell A. Seiber, Eduardo Sager, Gary H. Miller, Maria Garcia, Ryan Douglas Helmuth, Arnold M. Escano, Douglas Todd Ellison, William E. Cohn
  • Patent number: 8986278
    Abstract: Devices and methods for accessing the pericardial space of a heart are described here. Access devices may generally comprise a tissue-engaging member, a tissue-piercing member, and a guide element. The access device may be introduced to the surface of a pericardium, where the tissue-engaging member may be deployed to engage a portion of the pericardium without engaging the epicardial surface of the heart. Once the access device has engaged the pericardium, the device may manipulate the pericardium to increase the distance between a portion of the pericardium and the epicardial surface of the heart. Once a sufficient space has been created, the tissue-piercing member may be advanced to pierce the pericardium and enter the pericardial space. The guide element may then be introduced into the pericardial space to provide an access pathway to the heart for other devices.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: March 24, 2015
    Assignee: SentreHEART, Inc.
    Inventors: Gregory W. Fung, Russell A. Seiber, Eduardo A. Sager, Jr., Arnold M. Escano, Ryan Douglas Helmuth
  • Patent number: 8469983
    Abstract: Described here are devices and methods for suture management. In some variations, the devices comprise an elongate tubular member having a proximal end, a distal end, a lumen therebetween, a cantilever blade positioned near the distal end of the elongate tubular member, and an expandable member positioned adjacent the cantilever blade for actuating the cantilever blade. Also described are devices comprising an elongate tubular member having a proximal end, a distal end, a lumen at least partially therebetween, and an aperture in a wall thereof for passage of a suture therethrough. These devices further comprise a blade connected to a blade housing disposed within the lumen, where the blade is oriented parallel to the longitudinal axis of the lumen. The blade and blade housing may be slidable within the lumen, or an inner shaft for may be slidable within the lumen. Methods of using the devices are also described.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: June 25, 2013
    Assignee: SentreHEART, Inc.
    Inventors: Gregory W. Fung, Eduardo Sager, Russell A. Seiber, Gary H. Miller, Maria Garcia
  • Publication number: 20120095434
    Abstract: Devices and methods for accessing the pericardial space of a heart are described here. Access devices may generally comprise a tissue-engaging member, a tissue-piercing member, and a guide element. The access device may be introduced to the surface of a pericardium, where the tissue-engaging member may be deployed to engage a portion of the pericardium without engaging the epicardial surface of the heart. Once the access device has engaged the pericardium, the device may manipulate the pericardium to increase the distance between a portion of the pericardium and the epicardial surface of the heart. Once a sufficient space has been created, the tissue-piercing member may be advanced to pierce the pericardium and enter the pericardial space. The guide element may then be introduced into the pericardial space to provide an access pathway to the heart for other devices.
    Type: Application
    Filed: April 13, 2011
    Publication date: April 19, 2012
    Applicant: SENTREHEART, INC.
    Inventors: Gregory W. Fung, Russell A. Seiber, Eduardo A. Sager, JR., Arnold M. Escano, Ryan Douglas Helmuth
  • Publication number: 20110087247
    Abstract: Described here are devices for closing one or more tissues, and handles for controlling these devices. Generally, the devices described here comprise a snare loop assembly, wherein the snare loop assembly comprises a snare and a suture loop, and a handle for controlling the snare loop assembly. In some variations the snare loop assembly may comprise a retention member that may releasably connect the suture loop to the snare. In other variations the devices comprise one or more force-reducing suture locks to help prevent the suture loop from inadvertently disengaging from the snare loop assembly. In still other variations, the excess-suture management features. The handles described here may be configured to remove excess suture from a suture loop, and may also be configured to release the suture loop from the snare loop assembly.
    Type: Application
    Filed: April 1, 2010
    Publication date: April 14, 2011
    Inventors: Gregory W. Fung, Russell A. Seiber, Eduardo Sager, Gary H. Miller, Maria Garcia, Ryan Douglas Helmuth, Arnold M. Escano, Douglas Todd Ellison, William E. Cohn
  • Publication number: 20090082797
    Abstract: Described here are devices and methods for suture management. In some variations, the devices comprise an elongate tubular member having a proximal end, a distal end, a lumen therebetween, a cantilever blade positioned near the distal end of the elongate tubular member, and an expandable member positioned adjacent the cantilever blade for actuating the cantilever blade. Also described are devices comprising an elongate tubular member having a proximal end, a distal end, a lumen at least partially therebetween, and an aperture in a wall thereof for passage of a suture therethrough. These devices further comprise a blade connected to a blade housing disposed within the lumen, where the blade is oriented parallel to the longitudinal axis of the lumen. The blade and blade housing may be slidable within the lumen, or an inner shaft for may be slidable within the lumen. Methods of using the devices are also described.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 26, 2009
    Inventors: Gregory W. Fung, Eduardo Sager, Russell A. Seiber, Gary H. Miller, Maria Garcia