Patents by Inventor Edward Budiarto

Edward Budiarto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240027916
    Abstract: Embodiments disclosed herein include a method of monitoring a photoresist deposition process. In an embodiment, the method comprises depositing a photoresist layer to a first thickness over a substrate, measuring a property of the photoresist layer with a first electromagnetic (EM) radiation source, depositing the photoresist layer to a second thickness over the substrate, and measuring the property of the photoresist layer with the first EM radiation source.
    Type: Application
    Filed: May 16, 2023
    Publication date: January 25, 2024
    Inventors: RUIYING HAO, TODD EGAN, EDWARD BUDIARTO, PAOLA DE CECCO, REGINA FREED, BEKELE WORKU, MADHUR SACHAN, LUISA BOZANO, KELVIN CHAN
  • Patent number: 11613812
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: March 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20220290974
    Abstract: An optical metrology model for in-line thickness measurements of a film overlying non-ideal structures on a substrate is generated by performing pre-measurements prior to deposition of the film and performing post-measurements after the deposition. The pre- and post-measurements are performed at at least one of multiple polarization angles or multiple orientations of the substrate. Differences in reflectance between the pre- and post-measurements are determined at the multiple polarization angles and the multiple orientations. At least one of the multiple polarization angles or the multiple orientations are identified where the differences in reflectance are indicative of a suppressed influence from the non-ideal structures.
    Type: Application
    Filed: March 11, 2021
    Publication date: September 15, 2022
    Inventors: Eric Chin Hong Ng, Edward Budiarto, Sergey Starik, Todd J. Egan
  • Patent number: 10886155
    Abstract: A method and apparatus for forming an optical stack having uniform and accurate layers is provided. A processing tool used to form the optical stack comprises, within an enclosed environment, a first transfer chamber, an on-board metrology unit, and a second transfer chamber. A first plurality of processing chambers is coupled to the first transfer chamber or the second transfer chamber. The on-board metrology unit is disposed between the first transfer chamber and the second transfer chamber. The on-board metrology unit is configured to measure one or more optical properties of the individual layers of the optical stack without exposing the layers to an ambient environment.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: January 5, 2021
    Assignee: Applied Materials, Inc.
    Inventors: Mingwei Zhu, Zihao Yang, Nag B. Patibandla, Daniel Lee Diehl, Yong Cao, Weimin Zeng, Renjing Zheng, Edward Budiarto, Surender Kumar Gurusamy, Todd Egan, Niranjan R. Khasgiwale
  • Publication number: 20200399756
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 10793954
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 6, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20200227294
    Abstract: A method and apparatus for forming an optical stack having uniform and accurate layers is provided. A processing tool used to form the optical stack comprises, within an enclosed environment, a first transfer chamber, an on-board metrology unit, and a second transfer chamber. A first plurality of processing chambers is coupled to the first transfer chamber or the second transfer chamber. The on-board metrology unit is disposed between the first transfer chamber and the second transfer chamber. The on-board metrology unit is configured to measure one or more optical properties of the individual layers of the optical stack without exposing the layers to an ambient environment.
    Type: Application
    Filed: January 16, 2019
    Publication date: July 16, 2020
    Inventors: Mingwei ZHU, Zihao YANG, Nag B. PATIBANDLA, Daniel DIEHL, Yong CAO, Weimin ZENG, Renjing ZHENG, Edward BUDIARTO, Surender Kumar GURUSAMY, Todd EGAN, Niranjan R. KHASGIWALE
  • Patent number: 10527407
    Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: January 7, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Khokan C. Paul, Edward Budiarto, Todd Egan, Mehdi Vaez-Iravani, Jeongmin Lee, Dale R. Du Bois, Terrance Y. Lee
  • Publication number: 20190390949
    Abstract: A method and system for determining a thickness of a conductive film layer deposited on a wafer include at two eddy current sensors to take electrical resistivity measurements of the conductive film layer on the wafer as the wafer is being transported by a robot arm, a temperature sensor to determine a temperature change of the wafer during the electrical resistivity measurement, and a processing device to adjust a value of the electrical resistivity measurement by an amount based on the determined temperature change and to determine a thickness of the conductive film layer using the adjusted value of the electrical resistivity measurement and a previously determined correlation between electrical resistivity measurement values and respective thicknesses of conductive film layers. Alternatively, the wafer can be kept at a steady temperature when taking electrical resistivity measurements of the conductive film layer to determine a thickness of the conductive film layer.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 26, 2019
    Inventors: KAI WU, WEI MIN CHAN, PEIQI WANG, PAUL MA, EDWARD BUDIARTO, KUN XU, TODD J. EGAN
  • Publication number: 20190212128
    Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Khokan C. PAUL, Edward BUDIARTO, Todd EGAN, Mehdi VAEZ-IRAVANI, Jeongmin LEE, Dale R. DU BOIS, Terrance Y. LEE
  • Patent number: 10281261
    Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: May 7, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Khokan C. Paul, Edward Budiarto, Todd Egan, Mehdi Vaez-Iravani, Jeongmin Lee, Dale R. Du Bois, Terrance Y. Lee
  • Publication number: 20180258535
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 10060032
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 28, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 10030306
    Abstract: Apparatus and method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: July 24, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20180074311
    Abstract: Embodiments described herein generally relate to a DMD. The DMD includes a base and a plurality of mirrors disposed on the base. Each mirror of the plurality of mirrors has a surface facing away from the base, and a structure is disposed on the surface of each mirror. The structure enhances the reflectance of the surface of each mirror, which enhances the efficiency of light manipulation and delivery.
    Type: Application
    Filed: May 14, 2015
    Publication date: March 15, 2018
    Inventors: Edward BUDIARTO, Mehdi VAEZ-IRAVANI, Christopher BENCHER
  • Publication number: 20180066364
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 8, 2018
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20180057935
    Abstract: Embodiments of the present invention provide an apparatus and methods for detecting an endpoint for a cleaning process. In one example, a method of determining a cleaning endpoint includes performing a cleaning process in a plasma processing chamber, directing an optical signal to a surface of a shadow frame during the cleaning process, collecting a return reflected optical signal reflected from the surface of the shadow frame, determining a change of reflectance intensity of the return reflected optical signal as collected, and determining an endpoint of the cleaning process based on the change of the reflected intensity. In another example, an apparatus for performing a plasma process and a cleaning process after the plasma process includes an optical monitoring system coupled to a processing chamber, the optical monitoring system configured to direct an optical beam light to a surface of a shadow frame disposed in the processing chamber.
    Type: Application
    Filed: August 23, 2017
    Publication date: March 1, 2018
    Inventors: Edward BUDIARTO, Beom Soo PARK, Soo Young CHOI, Fei PENG, Todd EGAN
  • Patent number: 9816187
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: November 14, 2017
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Publication number: 20170016118
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 19, 2017
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Publication number: 20160370173
    Abstract: Embodiments of the present disclosure relate to apparatus and methods for forming films having uniformity of thickness on substrates. Embodiments of the present disclosure may be used to measure thickness or other properties of films being deposited on a substrate without knowing beforehand the surface properties of the substrate. Embodiments of the present disclosure may be used to measure thickness or other properties of a plurality of layers being formed. For example, embodiments of the present disclosure may be used in measuring thickness of vertical memory stacks.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 22, 2016
    Inventors: Khokan C. PAUL, Edward BUDIARTO, Todd EGAN, Mehdi VAEZ-IRAVANI, Jeongmin LEE, Dale R. DU BOIS, Terrance Y. LEE