Patents by Inventor Edward R. Prack

Edward R. Prack has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120153504
    Abstract: A microelectronic package includes a substrate (110, 210), an interposer (120, 220) having a first surface (121) and an opposing second surface (122), a microelectronic die (130, 230) attached to the substrate, and a mold compound (140) over the substrate. The interposer is electrically connected to the substrate using a wirebond (150). The first surface of the interposer is physically connected to the substrate with an adhesive (160), and the second surface has an electrically conductive contact (126) formed therein. The mold compound completely encapsulates the wirebond and partially encapsulates the interposer such that the electrically conductive contact in the second surface of the interposer remains uncovered by the mold compound.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 21, 2012
    Inventors: Leonel R. Arana, Edward R. Prack, Robert M. Nickerson
  • Patent number: 8072062
    Abstract: A circuit device is placed within an opening of a conductive layer which is then partially encapsulated with an encapsulant so that the active surface of the circuit device is coplanar with the conductive layer. At least a portion of the conductive layer may be used as a reference voltage plane (e.g. a ground plane). Additionally, a circuit device may be placed on a conductive layer such that an active surface of circuit device is between conductive layer and an opposite surface of circuit device. The conductive layer has at least one opening to expose the active surface of circuit device. The encapsulant may be electrically conductive or electrically non-conductive.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: December 6, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Publication number: 20090294515
    Abstract: A poly(alkylene carbonate) tack agent may be used to secure an electrical component, such as an integrated circuit, to a substrate for soldering. The tack agent may disintegrate or vaporize at normal reflow temperatures so that no clean up is needed. In some embodiments, flexless soldering may be implemented. If flux is desired, the flux may be mixed with the tack agent in some embodiments. For example, the flux may be incorporated in microcapsules within the tack agent.
    Type: Application
    Filed: May 30, 2008
    Publication date: December 3, 2009
    Inventors: Edward R. Prack, Amram Eitan
  • Publication number: 20080305603
    Abstract: A capacitor may be formed of carbon nanotubes. Carbon nanotubes, grown on substrates, may be formed in a desired pattern. The pattern may be defined by placing catalyst in appropriate locations for carbon nanotube growth from a substrate. Then, intermeshing arrays of carbon nanotubes may be formed by juxtaposing the carbon nanotubes formed on opposed substrates. In some embodiments, the carbon nanotubes may be covered by a dielectric which may be adhered by functionalizing the carbon nanotubes.
    Type: Application
    Filed: August 11, 2008
    Publication date: December 11, 2008
    Inventors: Larry E. Mosley, James G. Maveety, Edward R. Prack
  • Patent number: 7462551
    Abstract: In some embodiments, an adhesive system for supporting thin silicon wafer is presented. In this regard, a method is introduced to bond a silicon wafer to a translucent carrier through the use of an adhesive. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: December 9, 2008
    Assignee: Intel Corporation
    Inventors: Sudhakar N. Kulkarni, Leonel R. Arana, Edward R. Prack
  • Patent number: 7428138
    Abstract: A capacitor may be formed of carbon nanotubes. Carbon nanotubes, grown on substrates, may be formed in a desired pattern. The pattern may be defined by placing catalyst in appropriate locations for carbon nanotube growth from a substrate. Then, intermeshing arrays of carbon nanotubes may be formed by juxtaposing the carbon nanotubes formed on opposed substrates. In some embodiments, the carbon nanotubes may be covered by a dielectric which may be adhered by functionalizing the carbon nanotubes.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: September 23, 2008
    Assignee: Intel Corporation
    Inventors: Larry E. Mosley, James G. Maveety, Edward R. Prack
  • Publication number: 20080142960
    Abstract: A circuit device is placed within an opening of a conductive layer which is then partially encapsulated with an encapsulant so that the active surface of the circuit device is coplanar with the conductive layer. At least a portion of the conductive layer may be used as a reference voltage plane (e.g. a ground plane). Additionally, a circuit device may be placed on a conductive layer such that an active surface of circuit device is between conductive layer and an opposite surface of circuit device. The conductive layer has at least one opening to expose the active surface of circuit device. The encapsulant may be electrically conductive or electrically non-conductive.
    Type: Application
    Filed: February 28, 2008
    Publication date: June 19, 2008
    Applicant: Freescale Semiconductor, Inc.
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Patent number: 7361987
    Abstract: A circuit device (15) is placed within an opening of a conductive layer (10) which is then partially encapsulated with an encapsulant (24) so that the active surface of the circuit device (15) is coplanar with the conductive layer (10). At least a portion of the conductive layer (10) may be used as a reference voltage plane (e.g. a ground plane). Additionally, a circuit device (115) may be placed on a conductive layer (100) such that an active surface of circuit device (115) is between conductive layer (100) and an opposite surface of circuit device (115). The conductive layer (100) has at least one opening (128) to expose the active surface of circuit device (115). The encapsulant (24, 126, 326) may be electrically conductive or electrically non-conductive.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: April 22, 2008
    Assignee: Freescale Semiconductor, Inc.
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Patent number: 6921975
    Abstract: A circuit device (15) is placed within an opening of a conductive layer (10) which is then partially encapsulated with an encapsulant (24) so that the active surface of the circuit device (15) is coplanar with the conductive layer (10). At least a portion of the conductive layer (10) may be used as a reference voltage plane (e.g. a ground plane). Additionally, a circuit device (115) may be placed on a conductive layer (100) such that an active surface of circuit device (115) is between conductive layer (100) and an opposite surface of circuit device (115). The conductive layer (100) has at least one opening (128) to expose the active surface of circuit device (115). The encapsulant (24, 126,326) may be electrically conductive or electrically non-conductive.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: July 26, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Patent number: 6888246
    Abstract: In accordance with one embodiment, a stress buffer (40) is formed between a power metal structure (90) and passivation layer (30). The stress buffer (40) reduces the effects of stress imparted upon the passivation layer (30) by the power metal structure (90). In accordance with an alternative embodiment, a power metal structure (130A) is partitioned into segments (1091), whereby electrical continuity is maintained between the segments (1090) by remaining portions of a seed layer (1052) and adhesion/barrier layer (1050). The individual segments (1090) impart a lower peak stress than a comparably sized continuous power metal structure (9).
    Type: Grant
    Filed: May 29, 2003
    Date of Patent: May 3, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Lei L. Mercado, Vijay Sarihan, Young Sir Chung, James Jen-Ho Wang, Edward R. Prack
  • Patent number: 6838776
    Abstract: In one embodiment, circuit device (15) is placed within an opening of a conductive layer (10) which is then partially encapsulated with an encapsulant (24) so that the active surface of the circuit device (15) is coplanar with the conductive layer (10). In this embodiment, at least a portion of the conductive layer (10) may be used as a reference voltage plane (e.g. a ground plane). In one embodiment, circuit device (115) is placed on a conductive layer (100) such that an active surface of circuit device (115) is between conductive layer (100) and an opposite surface of circuit device (115). In this embodiment, conductive layer (100) has at least one opening (128) to expose the active surface of circuit device (115). The encapsulant (24, 126, 326) may be electrically conductive for some embodiments, and electrically non-conductive for other embodiments.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: January 4, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Publication number: 20040207077
    Abstract: In one embodiment, circuit device (15) is placed within an opening of a conductive layer (10) which is then partially encapsulated with an encapsulant (24) so that the active surface of the circuit device (15) is coplanar with the conductive layer (10). In this embodiment, at least a portion of the conductive layer (10) may be used as a reference voltage plane (e.g. a ground plane). In one embodiment, circuit device (115) is placed on a conductive layer (100) such that an active surface of circuit device (115) is between conductive layer (100) and an opposite surface of circuit device (115). In this embodiment, conductive layer (100) has at least one opening (128) to expose the active surface of circuit device (115). The encapsulant (24, 126, 326) may be electrically conductive for some embodiments, and electrically non-conductive for other embodiments.
    Type: Application
    Filed: April 18, 2003
    Publication date: October 21, 2004
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Publication number: 20040207068
    Abstract: In one embodiment, circuit device (15) is placed within an opening of a conductive layer (10) which is then partially encapsulated with an encapsulant (24) so that the active surface of the circuit device (15) is coplanar with the conductive layer (10). In this embodiment, at least a portion of the conductive layer (10) may be used as a reference voltage plane (e.g. a ground plane). In one embodiment, circuit device (115) is placed on a conductive layer (100) such that an active surface of circuit device (115) is between conductive layer (100) and an opposite surface of circuit device (115). In this embodiment, conductive layer (100) has at least one opening (128) to expose the active surface of circuit device (115). The encapsulant (24, 126, 326) may be electrically conductive for some embodiments, and electrically non-conductive for other embodiments.
    Type: Application
    Filed: April 18, 2003
    Publication date: October 21, 2004
    Inventors: George R. Leal, Jie-Hua Zhao, Edward R. Prack, Robert J. Wenzel, Brian D. Sawyer, David G. Wontor, Marc Alan Mangrum
  • Publication number: 20030232493
    Abstract: In accordance with one embodiment, a stress buffer (40) is formed between a power metal structure (90) and passivation layer (30). The stress buffer (40) reduces the effects of stress imparted upon the passivation layer (30) by the power metal structure (90). In accordance with an alternative embodiment, a power metal structure (130A) is partitioned into segments (1091), whereby electrical continuity is maintained between the segments (1090) by remaining portions of a seed layer (1052) and adhesion/barrier layer (1050). The individual segments (1090) impart a lower peak stress than a comparably sized continuous power metal structure (9).
    Type: Application
    Filed: May 29, 2003
    Publication date: December 18, 2003
    Inventors: Lei L. Mercado, Vijay Sarihan, Young Sir Chung, James Jen-Ho Wang, Edward R. Prack
  • Patent number: 6664200
    Abstract: A method of manufacturing a semiconductor component having a layer (240, 340) comprised of polyimide includes using an etchant that is at least partially composed of aminopropanediol to etch the layer comprised of polyimide. The etchant can also include a solvent, a diluent, and water.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: December 16, 2003
    Inventors: Edward R. Prack, Frank W. Fischer, Treliant Fang
  • Patent number: 6646347
    Abstract: In accordance with one embodiment, a stress buffer (40) is formed between a power metal structure (90) and passivation layer (30). The stress buffer (40) reduces the effects of stress imparted upon the passivation layer (30) by the power metal structure (90). In accordance with an alternative embodiment, a power metal structure (130A) is partitioned into segments (1091), whereby electrical continuity is maintained between the segments (1090) by remaining portions of a seed layer (1052) and adhesion/barrier layer (1050). The individual segments (1090) impart a lower peak stress than a comparably sized continuous power metal structure (9).
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: November 11, 2003
    Assignee: Motorola, Inc.
    Inventors: Lei L. Mercado, Vijay Sarihan, Young Sir Chung, James Jen-Ho Wang, Edward R. Prack
  • Publication number: 20030102563
    Abstract: In accordance with one embodiment, a stress buffer (40) is formed between a power metal structure (90) and passivation layer (30). The stress buffer (40) reduces the effects of stress imparted upon the passivation layer (30) by the power metal structure (90). In accordance with an alternative embodiment, a power metal structure (130A) is partitioned into segments (1091), whereby electrical continuity is maintained between the segments (1090) by remaining portions of a seed layer (1052) and adhesion/barrier layer (1050). The individual segments (1090) impart a lower peak stress than a comparably sized continuous power metal structure (9).
    Type: Application
    Filed: November 30, 2001
    Publication date: June 5, 2003
    Inventors: Lei L. Mercado, Vijay Sarihan, Young Sir Chung, James Jen-Ho Wang, Edward R. Prack