Patents by Inventor Edward Wolfe, IV

Edward Wolfe, IV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10661629
    Abstract: A method for controlling the temperature in a vehicle cabin, while the vehicle engine is turned off, includes the following steps: importing a State-of Charge information of a vehicle traction battery, an outside temperature, and inside temperature of the cabin into an electronic controller; calculating a normal electric power required for operating an HVAC system in a Normal mode; calculating a maximum operation time of the HVAC system in the Normal mode based on the State-of-Charge information; displaying the maximum operation time on a display; reading an operator input selecting one mode of at least the Normal mode and a first Eco mode of the HVAC system, wherein in the first Eco mode the HVAC system operates at a reduced electric power compared to the Normal mode; and operating the HVAC system in accordance with the operator input. A suitable HVAC system includes an appropriate user interface.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: May 26, 2020
    Assignee: MAHLE International GmbH
    Inventors: Timothy D. Craig, Derek F. Klima, Mingyu Wang, Lawrence Wei, Edward Wolfe, IV
  • Publication number: 20200158388
    Abstract: An evaporator for an air conditioning system includes a plurality of clamshell plates stacked in series along a longitudinal axis and a plurality of core tubes coupled with the stacked clamshell plates. In an upper region of the evaporator, the stacked clamshell plates form an inlet tank and an outlet tank hydraulically communicated with the core tubes for a refrigerant flow. Each of the clamshell plates includes a pooling ridge on a first surface of the clamshell plate for pooling a liquid refrigerant by gravity such that the liquid refrigerant is evenly distributed to inlet core tubes disposed along the longitudinal axis.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 21, 2020
    Inventors: Gary Scott Vreeland, Yanping Xia, Edward Wolfe, IV, Carrie M. Kowsky, Lindsey Lee Leitzel
  • Patent number: 10350961
    Abstract: A heating system for an automotive passenger cabin includes a blower fan generating an air flow; a first heater core downstream of the blower fan; a second heater core downstream of the first heater core; a coolant loop with a first branch and a second branch, wherein the first heater core is disposed in the first branch and the second heater core is disposed in the second branch; a change-over valve arrangement having a first setting establishing fluid communication between the first and second heater cores by connecting the first and second branches in two locations on opposite sides of the first and second heater cores. The change-over valve arrangement has a second setting separating the fluid communication between the first and second heater cores by disconnecting the first and second branches. The second branch or both the first and the second branch are connectable to a PCM heater.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: July 16, 2019
    Assignee: MAHLE International GmbH
    Inventors: Mingyu Wang, Edward Wolfe, IV, Timothy Craig, Prasad Kadle
  • Publication number: 20180236843
    Abstract: A heating system for an automotive passenger cabin includes a blower fan generating an air flow; a first heater core downstream of the blower fan; a second heater core downstream of the first heater core; a coolant loop with a first branch and a second branch, wherein the first heater core is disposed in the first branch and the second heater core is disposed in the second branch; a change-over valve arrangement having a first setting establishing fluid communication between the first and second heater cores by connecting the first and second branches in two locations on opposite sides of the first and second heater cores. The change-over valve arrangement has a second setting separating the fluid communication between the first and second heater cores by disconnecting the first and second branches. The second branch or both the first and the second branch are connectable to a PCM heater.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Mingyu Wang, Edward Wolfe, IV, Timothy Craig, Prasad Kadle
  • Publication number: 20180229583
    Abstract: A method for controlling the temperature in a vehicle cabin, while the vehicle engine is turned off, includes the following steps: importing a State-of Charge information of a vehicle traction battery, an outside temperature, and inside temperature of the cabin into an electronic controller; calculating a normal electric power required for operating an HVAC system in a Normal mode; calculating a maximum operation time of the HVAC system in the Normal mode based on the State-of-Charge information; displaying the maximum operation time on a display; reading an operator input selecting one mode of at least the Normal mode and a first Eco mode of the HVAC system, wherein in the first Eco mode the HVAC system operates at a reduced electric power compared to the Normal mode; and operating the HVAC system in accordance with the operator input. A suitable HVAC system includes an appropriate user interface.
    Type: Application
    Filed: February 14, 2017
    Publication date: August 16, 2018
    Inventors: Timothy D. Craig, Derek F. Klima, Mingyu Wang, Lawrence Wei, Edward Wolfe, IV
  • Patent number: 9744829
    Abstract: A heating, ventilation, and air-conditioning (HVAC) system includes a blower, a fresh-air valve, a bypass duct, and a bypass valve. The blower is configured to urge air to flow from an inlet to an outlet of the blower. The fresh-air valve is operable to provide a mixture of air drawn from an outside-air duct and a recirculated-air duct to the inlet. The fresh-air valve is operable to a recirculate position where the outside-air duct is substantially blocked from communicating with the inlet. The bypass duct is configured to couple the outlet to the outside-air duct. The bypass valve is located in the bypass duct and is operable to a closed position and an open position. The cabin is ventilated when the fresh-air valve is in the recirculate position, the bypass valve is in the open position, and the blower is operated to blow air out of the outside-air duct.
    Type: Grant
    Filed: September 23, 2014
    Date of Patent: August 29, 2017
    Assignee: MAHLE International GmbH
    Inventors: Mingyu Wang, Debashis Ghosh, Edward Wolfe, IV, Sourav Chowdhury, Timothy D. Craig
  • Patent number: 9587888
    Abstract: An internal heat exchanger assembly for an air conditioning system, having a housing defining a cylindrical with opposing ends. The ends are sealed with end caps having inlets/outlets. A helical coil tube is coaxially disposed within the cylindrical cavity, in which the helical coil includes two tube ends extending in opposing directions and exiting the cylindrical cavity through tube ports provided in the end caps. A twisted elongated strip is coaxially disposed within the cylindrical cavity extending from the first end to the second end. The twisted elongated strip includes a plurality of radially extending fingers adapted to engage the helical coil to maintain the helical coil in a predetermined position.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: March 7, 2017
    Assignee: MAHLE International GmbH
    Inventors: Edward Wolfe, IV, Prasad Shripad Kadle, Carrie M. Kowsky, James Alan Bright
  • Patent number: 9464837
    Abstract: A method of controlling an air conditioning compressor in a heating ventilation and air conditioning system having a evaporator including a phase change material is presented. The method includes the steps of measuring an evaporator output air temperature, determining a state of charge value by calculating a difference between an estimated refrigerant temperature based on the evaporator output air temperature and a phase change material freeze temperature and integrating this difference over time and operating the air conditioning compressor to maintain the state of charge value between an upper and lower limit. A method of recovering braking energy in a vehicle containing a heating ventilation and air conditioning system having the evaporator including the phase change material is also presented.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: October 11, 2016
    Assignee: MAHLE International GmbH
    Inventors: Mingyu Wang, Prasad S. Kadle, Edward Wolfe, IV
  • Patent number: 9457639
    Abstract: A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 4, 2016
    Assignee: MAHLE International GmbH
    Inventors: Mingyu Wang, Prasad S. Kadle, Debashis Ghosh, Mark J. Zima, Edward Wolfe, IV, Timothy D Craig
  • Patent number: 9400510
    Abstract: An evaporator has a manifold and a plurality of refrigerant tubes extending downward in the direction of gravity from the manifold. The evaporator includes at least one PCM housing engaging the upper portion of the refrigerant tube for storing a phase change material. When operating in a first operating mode, heat is transferred from the phase change material to the refrigerant to freeze and cool the phase change material. When operating in a second operating mode, heat is transferred from the refrigerant to the frozen phase change material to condense the refrigerant. The condensed refrigerant falls downwardly through the tubes and receives heat from a flow of air to cool the air and evaporate the refrigerant. The evaporated refrigerant rises upwardly back to the low pressure of the cold manifold.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: July 26, 2016
    Assignee: MAHLE International GmbH
    Inventors: Mingyu Wang, Prasad Shripad Kadle, Edward Wolfe, IV
  • Publication number: 20160082809
    Abstract: A heating, ventilation, and air-conditioning (HVAC) system includes a blower, a fresh-air valve, a bypass duct, and a bypass valve. The blower is configured to urge air to flow from an inlet to an outlet of the blower. The fresh-air valve is operable to provide a mixture of air drawn from an outside-air duct and a recirculated-air duct to the inlet. The fresh-air valve is operable to a recirculate position where the outside-air duct is substantially blocked from communicating with the inlet. The bypass duct is configured to couple the outlet to the outside-air duct. The bypass valve is located in the bypass duct and is operable to a closed position and an open position. The cabin is ventilated when the fresh-air valve is in the recirculate position, the bypass valve is in the open position, and the blower is operated to blow air out of the outside-air duct.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 24, 2016
    Inventors: MINGYU WANG, DEBASHIS GHOSH, EDWARD WOLFE, IV, SOURAV CHOWDHURY, TIMOTHY D. CRAIG
  • Patent number: 9243824
    Abstract: An internal heat exchanger assembly for an air conditioning system, having a substantial cylindrical cavity in which a helical coil tube is coaxially disposed within the cylindrical cavity. A bleed valve assembly is incorporated into the helical coiled tube, in which the bleed valve assembly is adapted to open at a predetermined differential pressure between the high pressure side and low pressure side of the internal heat exchanger. The bleed valve selectively bleeds refrigerant from the high pressure side to the low pressure side, thereby increasing the pressure and mass flow rate of the refrigerant to the suction side of a compressor.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 26, 2016
    Assignee: DELPHI TECHNOLOGIES, INC.
    Inventors: Edward Wolfe, IV, Prasad S. Kadle, Carrie M. Kowsky, James A. Bright, Timothy D. Craig, Gregory J. Kowalski, Mark J. Zima, Nick G. Sabha
  • Patent number: 9150081
    Abstract: An evaporator having a manifold and a plurality of refrigerant tubes extending downward in the direction of gravity from the manifold. The evaporator includes at least one PCM housing engaging the upper portion of the refrigerant tube for storing a phase change material. When operating in a first operating mode, heat is transferred from the phase change material to the refrigerant to freeze and cool the phase change material. When operating in a second operating mode, heat is transferred from the refrigerant to the frozen phase change material to condense the refrigerant. The condensed refrigerant falls downwardly through the tubes and receives heat from a flow of air to cool the air and evaporate the refrigerant. The evaporated refrigerant rises upwardly back to the low pressure of the cold manifold.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 6, 2015
    Assignee: Delphi Technologies, Inc.
    Inventors: Gary Scott Vreeland, Edward Wolfe, IV, Scott B. Lipa, Prasad S. Kadle
  • Publication number: 20150219367
    Abstract: A thermoelectric heat exchanger and a thermoelectric heating, ventilation and air conditioning system (HVAC) configured to provide a cooled fluid or air stream and a heated fluid or air stream. The thermoelectric heat exchanger may include a plurality thermoelectric devices (TEDs), also known as thermoelectric coolers (TECs) or Peltier coolers, in thermal communication. The thermoelectric devices may be arranged in a three dimensional array to provide compact packaging for the thermoelectric heat exchanger assembly. The thermoelectric heat exchanger may be configured to transfer thermal energy between a first thermoelectric device and a second thermoelectric device via evaporation and condensation of a working fluid or refrigerant contained within the thermoelectric heat exchanger.
    Type: Application
    Filed: March 26, 2015
    Publication date: August 6, 2015
    Inventors: PRASAD S. KADLE, MINGYU WANG, EDWARD WOLFE, IV
  • Patent number: 8596080
    Abstract: An air conditioning system having an improved internal heat exchanger (IHX) assembly. The IHX assembly includes an elongated cavity for low pressure refrigerant flow from an evaporator and an interior tube disposed within the cavity for high pressure refrigerant flow from a condenser, and a pressure equalization passage between the low and high pressure sides. The passage is large enough to allow pressures to equalize between the condenser and evaporator while the air conditioning system is inactive, so as to prevent the pressure differential that would otherwise enable the loss of refrigerant oil from the compressor, and small enough not to effect the operation of the air conditioning system. The pressure equalization passage may be a by-pass valve assembly having a reed portion that is normally open when the air conditioning system is inactive and closed when the air conditioning system is active for maximum cooling efficiency.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: December 3, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Edward Wolfe, IV, Prasad Shripad Kadle, James Alan Bright, Mingyu Wang
  • Publication number: 20130283827
    Abstract: A method of controlling an air conditioning compressor in a heating ventilation and air conditioning system having a evaporator including a phase change material is presented. The method includes the steps of measuring an evaporator output air temperature, determining a state of charge value by calculating a difference between an estimated refrigerant temperature based on the evaporator output air temperature and a phase change material freeze temperature and integrating this difference over time and operating the air conditioning compressor to maintain the state of charge value between an upper and lower limit. A method of recovering braking energy in a vehicle containing a heating ventilation and air conditioning system having the evaporator including the phase change material is also presented.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 31, 2013
    Inventors: MINGYU WANG, PRASAD S. KADLE, EDWARD WOLFE, IV
  • Publication number: 20130283838
    Abstract: The disclosure relates to a unitary heat pump air conditioner (Unitary HPAC) that includes a refrigerant loop having a condenser, a refrigerant expansion device, and an evaporator hydraulically connected in series. An electrically driven compressor is provided to circulate a two-phase refrigerant through the refrigerant loop to transfer heat from the evaporator to the condenser. The unitary HPAC also includes a cold side chiller configured to hydraulically connect to a cold side coolant loop and is in thermal communication with the evaporator. The unitary HPAC further includes a hot side chiller configured to hydraulically connect to a hot side coolant loop and is in thermal communication with the condenser. The refrigerant loop transfer heat from the cold side chiller to the hot side chiller, thereby cooling the cold side coolant loop and heating the hot side coolant loop. The components of the unitary HPAC are mounted on a common platform.
    Type: Application
    Filed: February 16, 2012
    Publication date: October 31, 2013
    Applicant: Delphi Technologies, Inc.
    Inventors: Prasad S. Kadle, Frederick V. Oddi, Gary S. Vreeland, Edward Wolfe, IV, Lindsey L. Leitzel, Scott B. Lipa
  • Publication number: 20130248166
    Abstract: An evaporator has a manifold and a plurality of refrigerant tubes extending downward in the direction of gravity from the manifold. The evaporator includes at least one PCM housing engaging the upper portion of the refrigerant tube for storing a phase change material. When operating in a first operating mode, heat is transferred from the phase change material to the refrigerant to freeze and cool the phase change material. When operating in a second operating mode, heat is transferred from the refrigerant to the frozen phase change material to condense the refrigerant. The condensed refrigerant falls downwardly through the tubes and receives heat from a flow of air to cool the air and evaporate the refrigerant. The evaporated refrigerant rises upwardly back to the low pressure of the cold manifold.
    Type: Application
    Filed: March 18, 2013
    Publication date: September 26, 2013
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: MINGYU WANG, PRASAD SHRIPAD KADLE, EDWARD WOLFE, IV
  • Patent number: 8397529
    Abstract: An air conditioning system including an evaporator having a manifold and a plurality of tubes extending downward in a vertical direction from the manifold. The evaporator defines at least one PCM tank engaging the manifold for storing a phase change material. When operating in a first operating mode, heat is transferred from the phase change material to the refrigerant to freeze and cool the phase change material. When operating in a second operating mode, heat is transferred from the refrigerant to the frozen phase change material to condense the refrigerant. The condensed refrigerant falls downwardly through the tubes and receives heat from a flow of air to cool the air and evaporate the refrigerant. The evaporated refrigerant rises upwardly back to the low pressure of the cold manifold.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: March 19, 2013
    Assignee: Delphi Technologies, Inc.
    Inventors: Edward Wolfe, IV, Ilya Reyzin, Prasad S. Kadle, James A. Bright
  • Publication number: 20120276831
    Abstract: A heating, ventilation, and air conditioning (HVAC) system and a method of controlling a HVAC system that is configured to provide a perceived comfortable ambient environment to an occupant seated in a vehicle cabin. The system includes a nozzle configured to direct an air stream from the HVAC system to the location of a thermally sensitive portion of the body of the occupant. The system also includes a controller configured to determine an air stream temperature and an air stream flow rate necessary to establish the desired heat supply rate for the sensitive portion and provide a comfortable thermal environment by thermally isolating the occupant from the ambient vehicle cabin temperature. The system may include a sensor to determine the location of the sensitive portion. The nozzle may include a thermoelectric device to heat or cool the air stream.
    Type: Application
    Filed: April 10, 2012
    Publication date: November 1, 2012
    Applicant: DELPHI TECHNOLOGIES, INC.
    Inventors: MINGYU WANG, PRASAD S. KADLE, DEBASHIS GHOSH, MARK J. ZIMA, EDWARD WOLFE, IV, TIMOTHY D. CRAIG