Patents by Inventor Eiji Akita

Eiji Akita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9688153
    Abstract: An electric vehicle includes: an engine which is disposed on a front side in the vehicle, and which is configured to drive rear wheels of the vehicle, the engine which includes a crank shaft that is extended in a front/back direction of the vehicle; and a drive motor which is arranged in line with the engine in a width direction of the vehicle, and which is disposed on an air intake side of the engine, the drive motor which is configured to drive front wheels of the vehicle.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: June 27, 2017
    Assignees: MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA, MITSUBISHI JIDOSHA ENGINEERING KABUSHIKI KAISHA
    Inventors: Takuya Yamamoto, Hidetoshi Ono, Eiji Akita, Naoki Kida, Tomoaki Yokoyama
  • Publication number: 20160326961
    Abstract: A gas turbine cooling system includes an organic Rankine cycle in which a cycle medium repeatedly circulates through condensation and evaporation, an air-extraction line configured to extract compressed air from a compressor of a gas turbine, a cooling apparatus for cooling the compressed air while heating and evaporating the cycle medium condensed in the organic Rankine cycle using heat of the compressed air passing through the air-extraction line, and a cooling air line configured to guide the compressed air cooled by the cooling apparatus to a high temperature section of the gas turbine.
    Type: Application
    Filed: March 25, 2014
    Publication date: November 10, 2016
    Inventors: Yasuoki TOMITA, Eiji AKITA, Naoki SAKAGAMI, Takaaki NAGAKAWA, Jiro ASAKUNO, Masaru TAKAMATSU, Shin AKAZAWA, Yasuhiro TAKASHIMA
  • Publication number: 20150360572
    Abstract: An electric vehicle includes: an engine which is disposed on a front side in the vehicle, and which is configured to drive rear wheels of the vehicle, the engine which includes a crank shaft that is extended in a front/back direction of the vehicle; and a drive motor which is arranged in line with the engine in a width direction of the vehicle, and which is disposed on an air intake side of the engine, the drive motor which is configured to drive front wheels of the vehicle.
    Type: Application
    Filed: June 12, 2015
    Publication date: December 17, 2015
    Applicants: MITSUBISHI JIDOSHA ENGINEERING KABUSHIKI KAISHA, MITSUBISHI JIDOSHA KOGYO KABUSHIKI KAISHA
    Inventors: Takuya YAMAMOTO, Hidetoshi ONO, Eiji AKITA, Naoki KIDA, Tomoaki YOKOYAMA
  • Patent number: 7481614
    Abstract: In a gas turbine having a plurality of moving blades provided on a rotary shaft in a circumferentially adjoining condition, a seal pin is provided in a spacing between the shanks of the adjacent moving blades for preventing leakage of cooling air from a blade root portion side to an airfoil side; an arcuately depressed portion is formed on the shank of each of the moving blades; and vibration of each of the moving blades is suppressed in such a manner that the seal pin serves as a spring system while the airfoil portion, the platform, the shank, and the blade root portion serve as a mass system.
    Type: Grant
    Filed: February 17, 2005
    Date of Patent: January 27, 2009
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yasuoki Tomita, Masaki Ono, Eiji Akita, Masao Terazaki, Masayuki Takahama, Kouji Watanabe, Hideki Murata
  • Patent number: 7229248
    Abstract: In the blade structure in a gas turbine, front-edge including angles are made large. As a result, a curve of a relative relationship between incidence angles ic1 and is1 and pressure loss becomes mild. Entrance metal angles are made small. As a result, it becomes possible to make the incidence angles small. Chord length of a tip portion of a moving blade is made large. As a result, it becomes possible to make small the deceleration on a rear surface of the tip portion of the moving blade. Accordingly, it becomes possible to make the pressure loss small, and therefore, it becomes possible to improve the turbine efficiency.
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: June 12, 2007
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Eisaku Ito, Eiji Akita
  • Publication number: 20050186074
    Abstract: In a gas turbine having a plurality of moving blades provided on a rotary shaft in a circumferentially adjoining condition, a seal pin is provided in a spacing between the shanks of the adjacent moving blades for preventing leakage of cooling air from a blade root portion side to an airfoil side; an arcuately depressed portion is formed on the shank of each of the moving blades; and vibration of each of the moving blades is suppressed in such a manner that the seal pin serves as a spring system while the airfoil portion, the platform, the shank, and the blade root portion serve as a mass system.
    Type: Application
    Filed: February 17, 2005
    Publication date: August 25, 2005
    Applicant: MITSUBISHI HEAVY INDUSTRIES, LTD.
    Inventors: Yasuoki Tomita, Masaki Ono, Eiji Akita, Masao Terazaki, Masayuki Takahama, Kouji Watanabe, Hideki Murata
  • Patent number: 6887042
    Abstract: In the blade structure in a gas turbine, front-edge including angles are made large. As a result, a curve of a relative relationship between incidence angles ic1 and is1 and pressure loss becomes mild. Entrance metal angles are made small. As a result, it becomes possible to make the incidence angles small. Chord length of a tip portion of a moving blade is made large. As a result, it becomes possible to make small the deceleration on a rear surface of the tip portion of the moving blade. Accordingly, it becomes possible to make the pressure loss small, and therefore, it becomes possible to improve the turbine efficiency.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: May 3, 2005
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Eisaku Ito, Eiji Akita
  • Publication number: 20050089403
    Abstract: In the blade structure in a gas turbine, front-edge including angles are made large. As a result, a curve of a relative relationship between incidence angles ic1 and is1 and pressure loss becomes mild. Entrance metal angles are made small. As a result, it becomes possible to make the incidence angles small. Chord length of a tip portion of a moving blade is made large. As a result, it becomes possible to make small the deceleration on a rear surface of the tip portion of the moving blade. Accordingly, it becomes possible to make the pressure loss small, and therefore, it becomes possible to improve the turbine efficiency.
    Type: Application
    Filed: August 9, 2004
    Publication date: April 28, 2005
    Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.
    Inventors: Eisaku Ito, Eiji Akita
  • Publication number: 20050013693
    Abstract: In the blade structure in a gas turbine, front-edge including angles are made large. As a result, a curve of a relative relationship between incidence angles ic1 and is1 and pressure loss becomes mild. Entrance metal angles are made small. As a result, it becomes possible to make the incidence angles small. Chord length of a tip portion of a moving blade is made large. As a result, it becomes possible to make small the deceleration on a rear surface of the tip portion of the moving blade. Accordingly, it becomes possible to make the pressure loss small, and therefore, it becomes possible to improve the turbine efficiency.
    Type: Application
    Filed: August 9, 2004
    Publication date: January 20, 2005
    Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.
    Inventors: Eisaku Ito, Eiji Akita
  • Patent number: 6634175
    Abstract: A gas turbine combustor has homogenous air inflow by elimination of turbulence from the air, reducing combustion instability. A combustor 3 has, at its center, a pilot nozzle 8 and eight main nozzles 7 around the pilot nozzle 8. The air flows in around the individual nozzles 7 and 8 to the leading end of the combustor 3 so that it is used for combustion. An annular flow ring 20, having a semicirculat section, is disposed at the upstream end portion of a combustion cylinder 10, and a porous plate 50 and a surrounding rib 51 are disposed downstream of the flow ring 20. The air inflow is smoothly turned at first by the flow ring 20 and then straightened by the porous plate 50 so that the air flows without any disturbance around the individual nozzles 7 and 8 to the leading end, thereby reducing combustion instability.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: October 21, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yutaka Kawata, Shigemi Mandai, Yoshiaki Tsukuda, Eiji Akita, Hisato Arimura
  • Publication number: 20020094270
    Abstract: In the blade structure in a gas turbine, front-edge including angles are made large. As a result, a curve of a relative relationship between incidence angles ic1 and is1 and pressure loss becomes mild. Entrance metal angles are made small. As a result, it becomes possible to make the incidence angles small. Chord length of a chip portion of a moving blade is made large. As a result, it becomes possible to make small the deceleration on a rear surface of the chip portion of the moving blade. Accordingly, it becomes possible to make the pressure loss small, and therefore, it becomes possible to improve the turbine efficiency.
    Type: Application
    Filed: December 20, 2001
    Publication date: July 18, 2002
    Applicant: MITSUBISHI HEAVY INDUSTRIES LTD.
    Inventors: Eisaku Ito, Eiji Akita
  • Patent number: 6389796
    Abstract: A gas turbine system and a combined plant including the gas turbine system provides a higher effect in realizing a high plant efficiency and reduction of NOx generation. The gas turbine system includes a compressor (1) for compressing combustion air, a combustor (2) for burning fuel with the combustion air, and a gas turbine (3) driven by high temperature gas generated at the combustor (2). A portion of the exhaust gas discharged from the gas turbine (3) is recirculated back into the combustor (2). A combined plant can also include the gas turbine system.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: May 21, 2002
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Shigemi Mandai, Hidetaka Mori, Hideaki Sugishita, Eiji Akita
  • Patent number: 6267583
    Abstract: A combustor includes a pilot fuel nozzle and a plurality of main premixing nozzles arranged therearound for forming a premixture of air and fuel supplied from a main fuel nozzle, and is improved so as not to cause vibratory combustion. Pilot fuel nozzle unit 104 comprises a plurality of pilot fuel nozzles 103. A plurality of main premixing nozzles 102 are disposed on a coaxial circumference of the pilot fuel nozzle unit 104. The pilot fuel nozzles 103 are arranged irregularly in a circumferential direction of the pilot fuel nozzle unit 104, so as to form portion 105 where there is no pilot fuel nozzle 103. Premature in the main premixing nozzles 102 positioned corresponding to the pilot fuel nozzle 103 burns with comparatively short flames. Premature in the main premixing nozzles 102 positioned corresponding to the portion 105 of no pilot fuel nozzle 103 burns with long flames because of flames spreading from adjacent main fuel nozzles.
    Type: Grant
    Filed: April 12, 1999
    Date of Patent: July 31, 2001
    Assignee: Mistubishi Heavy Industries, Ltd.
    Inventors: Shigemi Mandai, Koichi Nishida, Masataka Ota, Eiji Akita
  • Patent number: 6244039
    Abstract: A combined cycle plant includes a heat exchanger (3) for recovering heat into compressed air or gas turbine fuel to be supplied into gas turbine (01). The plant is arranged such that steam is used as high temperature side working medium of the heat exchanger (3). Thus, the heating medium supply passage can be made of ordinary steam piping and piping cost is reduced. Also, gas turbine exhaust gas is led directly into a waste heat recovery boiler (02), so that gas turbine efficiency and combined efficiency can be enhanced and plant manufacturing cost is reduced.
    Type: Grant
    Filed: April 28, 1999
    Date of Patent: June 12, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideaki Sugishita, Yoshiaki Tsukuda, Kazuo Uematsu, Eiji Akita
  • Patent number: 6212873
    Abstract: The invention provides a gas turbine combined cycle structured such that an intermediate cooling device for cooling a compression air discharged from a low pressure compressor, so as to reduce a load of a high pressure compressor, is provided. The gas turbine combined cycle in accordance with the invention is structured such as to branch water from a condenser to a steam generating device for generating steam. Exhaust gas discharged from a steam turbine is condensed to water. Compression air discharged from a low pressure compressor is cooled by being supplied to an intermediate cooling device, and is then supplied to a high pressure compressor. Steam which heats and operates the steam turbine is generated by the heat recovered by the cooling of the compression air in the intermediate cooling device. Accordingly, there can be obtained a gas turbine combined cycle having the advantage of the conventional intermediate cooling type gas turbine combined cycle, but exhibiting an improved combined efficiency.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: April 10, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hideaki Sugishita, Hidetaka Mori, Yoshiaki Tsukuda, Kazuo Uematsu, Eiji Akita
  • Patent number: 6196799
    Abstract: A gas turbine moving blade platform having a simplified cooling structure for effecting uniform cooling of the platform. The platform (1) includes cavities (2, 3, 4) and an impingement plate (11) provided below the cavities (2, 3, 4). A cooling hole (5) communicates with cavity (2), cooling hole (6) communicated with cavity (3) and cooling holes (7, 8) communicate with cavity (4) and all of the cooling holes pass through the platform (1) at an inclined angle. Cooling air (70) flows into the cavities (2, 3, 4) through holes (12) in the impingement plate (11) for effecting impingement cooling of platform (1) plane portion. The cooling air (70) further flows through the cooling holes (5, 6, 7) to blow outside angularly upward for cooling peripheral portions of the platform. Thus, the platform is cooled uniformly, no lengthy and complicated cooling passage is provided, and workability is enhanced.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: March 6, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Ichiro Fukue, Eiji Akita, Kiyoshi Suenaga, Yasuoki Tomita, Koji Watanabe
  • Patent number: 6190130
    Abstract: A gas turbine moving blade platform having a simplified platform cooling structure. A cooling effect of the platform side end portions is increased resulting in uniform cooling of the entire platform. Cooling passages (2, 3) are bored in the platform (1) front portion so as to communicate with a cooling air passage (52) of the moving blade (51) and open at both platform side end surfaces. The openings are closed by inserting covers (2a, 2b) therein. Cooling passages (6, 4) are bored in platform (1) side end portions so as to communicate with the front end cooling passages (2, 3), respectively, and open in the platform rear end surface. A plurality of cooling holes (5) are bored so as to communicate with the cooling passage (4) and open at the platform side end surface. Thus, the entire platform is cooled uniformly and the platform side portions are cooled by the cooling holes (5) so that an effective cooling performance is ensured and also the workability of the cooling lines is enhanced.
    Type: Grant
    Filed: February 23, 1999
    Date of Patent: February 20, 2001
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Ichiro Fukue, Eiji Akita, Kiyoshi Suenaga, Yasuoki Tomita
  • Patent number: 6152695
    Abstract: In a gas turbine moving blade 1, the convection of cooling air is promoted to enhance the heat transfer rate, the cooling effect of a shroud 2 is enhanced and the entire cooling effect of the blade is enhanced. An inner cavity 10 is formed in the blade over the entire length thereof. A multiplicity of pin fins 5 are provided in the inner cavity, being fixed to wall thereof. An enlarged cavity 6 is formed in the shroud 2 of a terminal end of the blade 1. Cooling air entering the inner cavity 10 of the blade 1 flows into the enlarged cavity 6 and flows out of the shroud 2 downwardly through holes 7 of a peripheral portion of the enlarged cavity 6. The entire portion of the shroud 2 is cooled uniformly, and the cooling effect of the entire blade is enhanced by an enhanced heat transfer rate in the blade and by uniform cooling of the entire shroud.
    Type: Grant
    Filed: February 3, 1999
    Date of Patent: November 28, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Ichiro Fukue, Eiji Akita, Kiyoshi Suenaga, Yasuoki Tomita
  • Patent number: 6099253
    Abstract: A gas turbine rotor blade has a plurality of first cooling holes for the flow of a cooling gas bored in a blade portion along its lengthwise direction and a plurality of second cooling holes for flow of the cooling gas bored in a shroud along its plane direction so as to communicate with the first cooling holes, and is constructed such that the cooling gas can flow in a uniform distribution. The plurality of the first cooling holes 3 for flow of the cooling gas are bored in the blade portion 2 and the plurality of the second cooling holes 5 for flow of the cooling gas are bored in the shroud 1 along its plane direction. The second cooling holes 5 communicate with the first cooling holes 3, hole to hole, via two-step holes 4, and the second cooling holes 5 are bored alternately on the dorsal side and the ventral side of the rotor blade.
    Type: Grant
    Filed: December 1, 1998
    Date of Patent: August 8, 2000
    Assignee: Mitsubishi Heavy Industries, Inc.
    Inventors: Ichiro Fukue, Eiji Akita, Kiyoshi Suenaga, Yasuoki Tomita
  • Patent number: 6071075
    Abstract: A mechanism for cooling the platform for the drive blades of a gas turbine uses a simple configuration which reliably cools the platform. The mechanism includes cooling channels in the interior of the platform which open out from one of the cooling air channels for cooling the turbine blades and which exit the platform through the edge nearest the tail. Cooling channels in the platform open out from the entrance to blade cooling channels, travel from the head of the blade along the blade sides, and exit through the edge near the tail of the blade. This structure diverts a portion of the cooling air entering the blade from the cooling channel in the base in order to cool the platform. Cooling air channels may extend from an enclosed air space below the platform to the upper surface of the platform at the front or rear side of the blade. Air channels may also extend on the rear of the turbine blade obliquely from the underside of the platform to the trailing edge of the platform.
    Type: Grant
    Filed: February 24, 1998
    Date of Patent: June 6, 2000
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Yasuoki Tomita, Eiji Akita, Masao Terazaki