Patents by Inventor Eiji Kamio

Eiji Kamio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11872521
    Abstract: An air purifying system includes: a carbon dioxide remover including first and second spaces partitioned by a gas permeable membrane with 50 nm or less diameter micropores; a feed passage leading to-be-purified air from a room to the first space; a supply passage supplying clean gas having lower carbon dioxide and higher oxygen concentrations than the to-be-purified air to the second space; a discharge passage discharging, from the second space, mixed gas; a return passage leading purified air from the first space into the room, the purified air resulting from removing carbon dioxide from the to-be-purified air; and adjusting equipment adjusting a gas pressure in the first and second spaces to be substantially equal to each other. The to-be-purified air flows in the first space along a surface of the gas permeable membrane, and the clean gas flows in the second space along a surface of the gas permeable membrane.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 16, 2024
    Assignee: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Katsuya Umemoto, Kazuhiro Okumura, Kouji Fukumoto, Tomoaki Umemura, Hideto Matsuyama, Eiji Kamio
  • Publication number: 20220134275
    Abstract: An air purifying system includes: a carbon dioxide remover including first and second spaces partitioned by a gas permeable membrane with 50 nm or less diameter micropores; a feed passage leading to-be-purified air from a room to the first space; a supply passage supplying clean gas having lower carbon dioxide and higher oxygen concentrations than the to-be-purified air to the second space; a discharge passage discharging, from the second space, mixed gas; a return passage leading purified air from the first space into the room, the purified air resulting from removing carbon dioxide from the to-be-purified air; and adjusting equipment adjusting a gas pressure in the first and second spaces to be substantially equal to each other. The to-be-purified air flows in the first space along a surface of the gas permeable membrane, and the clean gas flows in the second space along a surface of the gas permeable membrane.
    Type: Application
    Filed: January 24, 2020
    Publication date: May 5, 2022
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Katsuya UMEMOTO, Kazuhiro OKUMURA, Kouji FUKUMOTO, Tomoaki UMEMURA, Hideto MATSUYAMA, Eiji KAMIO
  • Publication number: 20220127293
    Abstract: To provide a liquid metal complex having an oxygen absorbing ability, containing a cobalt-acacen complex or a derivative thereof, and an ionic liquid in which an ionic ligand having an amine structure and a counter ion thereof are paired, in which the cobalt-acacen complex or the derivative thereof is expressed by general formula (1): and the liquid metal complex has a structure in which the amine structure of the ionic ligand is axially coordinated with a cobalt atom of the cobalt-acacen complex or the derivative thereof.
    Type: Application
    Filed: March 4, 2020
    Publication date: April 28, 2022
    Inventors: Yasunori NAKANISHI, Hideto MATSUYAMA, Eiji KAMIO, Atsushi MATSUOKA
  • Publication number: 20210261741
    Abstract: The present invention relates to a method for producing an ionic liquid-containing structure, including: an inorganic network structure forming step of forming a network structure of an inorganic compound in the presence of an ionic liquid; and a polymer network structure forming step of forming a polymer network structure of a prepolymer and a crosslinking agent in the presence of the ionic liquid.
    Type: Application
    Filed: August 29, 2019
    Publication date: August 26, 2021
    Inventors: Naomichi KIMURA, Yuri ITO, Terukazu IHARA, Eiji KAMIO, Hideto MATSUYAMA, Masayuki KINOSHITA, Tomoki YASUI
  • Publication number: 20200362140
    Abstract: An object of the present invention is to provide a method which can produce an ionic liquid-containing network structure with high productivity. A method for producing an ionic liquid-containing structure, which includes an inorganic particle network structure forming step of forming a network structure by inorganic particles in the presence of an ionic liquid, and a polymer network structure forming step of forming a network structure by polymerization of a monomer component containing at least a polar group-containing monomer in the presence of the ionic liquid is provided.
    Type: Application
    Filed: November 21, 2018
    Publication date: November 19, 2020
    Inventors: Naomichi KIMURA, Yuri ITO, Terukazu IHARA, Akira SHIMAZU, Hideto MATSUYAMA, Eiji KAMIO, Tomoki YASUI
  • Patent number: 10814269
    Abstract: A liquid having oxygen absorbing ability, comprising a cobalt-salen complex or a derivative thereof and an ionic liquid formed from an anion having an amine structure and a cation of an aliphatic quaternary phosphonium or ammonium having alkyl chains with each 2-20 carbon atoms, wherein the anion of the ionic liquid is coordinated to a cobalt ion of the cobalt-salen complex or a derivative thereof.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: October 27, 2020
    Assignees: SHARP KABUSHIKI KAISHA, NATIONAL UNIVERSITY CORP. KOBE UNIVERSITY
    Inventors: Yasunori Nakanishi, Hideto Matsuyama, Eiji Kamio, Atsushi Matsuoka
  • Publication number: 20200316529
    Abstract: A method of producing a DN gel membrane includes a step (1) including producing a 1st gel membrane by (i) casting, on a substrate, a solution containing an ionic liquid A and an ionic liquid B, the ionic liquid A being made up of 1st monomers each of which has a polymerizable functional group and (ii) polymerizing the 1st monomers; and a step (2) including producing the DN gel membrane by (i) immersing the 1st gel membrane in a solution containing 2nd monomers which are different from the 1st monomers and (ii) polymerizing the 2nd monomers. This method allows for continuous-type production which is suitable for industrial mass production of DN gel membranes or acid gas separation membranes.
    Type: Application
    Filed: May 29, 2017
    Publication date: October 8, 2020
    Applicant: SUMITOMO CHEMICAL COMPANY, LIMITED
    Inventors: Shohei KASAHARA, Yudai OTA, Hideto MATSUYAMA, Eiji KAMIO, Farhad MOGHADAM
  • Publication number: 20190291046
    Abstract: An oxygen separation membrane includes a porous material and a liquid complex contained in the porous material. The complex contains a metal salen complex or a derivative thereof and a first ionic liquid. The first ionic liquid is constituted by an anion having an amine structure and an imidazolium cation, an aliphatic quaternary phosphonium cation, or an ammonium cation that have alkyl chains, alkylene oxide chains, or alkyl ether chains with each 2 to 20 carbon atoms. The anion of the first ionic liquid is axially coordinated to a central metal ion of the metal salen complex or the derivative thereof.
    Type: Application
    Filed: July 10, 2017
    Publication date: September 26, 2019
    Inventors: Yasunori NAKANISHI, Hideto MATSUYAMA, Eiji KAMIO, Atsushi MATSUOKA
  • Publication number: 20190001260
    Abstract: A liquid having oxygen absorbing ability, comprising a cobalt-salen complex or a derivative thereof and an ionic liquid formed from an anion having an amine structure and a cation of an aliphatic quaternary phosphonium or ammonium having alkyl chains with each 2-20 carbon atoms, wherein the anion of the ionic liquid is coordinated to a cobalt ion of the cobalt-salen complex or a derivative thereof.
    Type: Application
    Filed: January 19, 2017
    Publication date: January 3, 2019
    Inventors: Yasunori NAKANISHI, Hideto MATSUYAMA, Eiji KAMIO, Atsushi MATSUOKA
  • Patent number: 9827535
    Abstract: A steam permselective membrane containing a crosslinked hydrophilic polymer is provided. The steam permselective membrane may further contain at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: November 28, 2017
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Eiji Kamio, Nobuaki Hanai, Miwako Obama
  • Patent number: 9597632
    Abstract: Disclosed is a CO2 permselective membrane 1 having an amino acid ionic liquid and a porous membrane impregnated with the amino acid ionic liquid, wherein the amino acid ionic liquid contains a certain range of water.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: March 21, 2017
    Assignees: Renaissance Energy Research Corporation, National University Corporation Kobe University
    Inventors: Osamu Okada, Nobuaki Hanai, Eiji Kamio, Shohei Kasahara, Hideto Matsuyama
  • Patent number: 9242206
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing at least carbon dioxide, nitrogen and water vapor, the energy utilization efficiency thereof is improved. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively. When the second mixture gas is supplied, the second separation membrane 34 separates water vapor that permeates through the second separation membrane 34 by allowing water vapor to permeate selectively.
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: January 26, 2016
    Assignee: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Publication number: 20140377156
    Abstract: Disclosed is a CO2 permselective membrane 1 having an amino acid ionic liquid and a porous membrane impregnated with the amino acid ionic liquid, wherein the amino acid ionic liquid contains a certain range of water.
    Type: Application
    Filed: February 6, 2013
    Publication date: December 25, 2014
    Applicants: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY, RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Nobuaki Hanai, Eiji Kamio, Shohei Kasahara, Hideto Matsuyama
  • Publication number: 20140352540
    Abstract: CO2-facilitated transport membrane that can be applied to a CO2-permeable membrane reactor is stably provided. The CO2-facilitated transport membrane is provided such that a gel layer 1 composed of a hydrogel membrane is deposited onto a porous membrane 2. More preferably, the gel layer 1 deposited onto a hydrophilic porous membrane 2 is coated with and supported by hydrophobic porous membranes 3 and 4. The gel layer contains a deprotonating agent including an alkali metal element together with glycine. The deprotonating agent is preferably a carbonate or a hydroxide of an alkali metal element, and more preferably, the alkali metal element is potassium, cesium, or rubidium.
    Type: Application
    Filed: July 26, 2012
    Publication date: December 4, 2014
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Eiji Kamio, Masaaki Teramoto, Nobuaki Hanai, Hideto Matsuyama
  • Publication number: 20140290479
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing at least carbon dioxide, nitrogen and water vapor, the energy utilization efficiency thereof is improved. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively. When the second mixture gas is supplied, the second separation membrane 34 separates water vapor that permeates through the second separation membrane 34 by allowing water vapor to permeate selectively.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: OSAMU OKADA, MASAAKI TERAMOTO, EIJI KAMIO, NOBUAKI HANAI, YASATO KIYOHARA
  • Patent number: 8784531
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing a predetermined major component gas, carbon dioxide, and water vapor, the energy utilization efficiency thereof is improved. Also, by utilizing the function of this gas separation apparatus, a membrane reactor and a hydrogen production apparatus exhibiting high energy utilization efficiency are provided. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied at a temperature of 100° C. or higher, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively.
    Type: Grant
    Filed: December 26, 2011
    Date of Patent: July 22, 2014
    Assignee: Renaissance Energy Research Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Publication number: 20130287678
    Abstract: In a gas separation apparatus that separates carbon dioxide and water vapor from a first mixture gas containing a predetermined major component gas, carbon dioxide, and water vapor, the energy utilization efficiency thereof is improved. Also, by utilizing the function of this gas separation apparatus, a membrane reactor and a hydrogen production apparatus exhibiting high energy utilization efficiency are provided. The gas separation apparatus is constructed to include a first separation membrane 33 and a second separation membrane 34 that are made of different materials. When the first mixture gas is supplied at a temperature of 100° C. or higher, the first separation membrane 33 separates a second mixture gas containing carbon dioxide and water vapor that permeate through the first separation membrane by allowing carbon dioxide and water vapor to permeate selectively.
    Type: Application
    Filed: December 26, 2011
    Publication date: October 31, 2013
    Applicant: Renaissance Energy Corporation
    Inventors: Osamu Okada, Masaaki Teramoto, Eiji Kamio, Nobuaki Hanai, Yasato Kiyohara
  • Publication number: 20130199370
    Abstract: A steam permselective membrane containing a crosslinked hydrophilic polymer is provided. The steam permselective membrane may further contain at least one alkali metal compound selected from the group consisting of a cesium compound, a potassium compound and a rubidium compound.
    Type: Application
    Filed: July 26, 2011
    Publication date: August 8, 2013
    Applicant: RENAISSANCE ENERGY RESEARCH CORPORATION
    Inventors: Osamu Okada, Eiji Kamio, Nobuaki Hanai, Miwako Obama
  • Publication number: 20100163114
    Abstract: A micro mixer including a first tubular member for guiding a first fluid to be directed in a first direction; a second tubular member having a discharge portion in the downstream portion of said first tubular member for guiding a second fluid to be directed in a direction opposite to said first direction, said discharge portion having a flow passage space narrower than the flow passage space of the downstream portion of the first tubular member; a first annular space defined by the downstream portion of the first tubular member and the discharge portion of the second tubular member for guiding a mixed fluid caused by colliding the first fluid flowing in the first tubular member with the second fluid flowing in the second tubular member in a counter-flow manner to be directed in the same direction as said first direction and further for increasing the pressure of said mixed fluid; a mixing-promoting space communicating with said first annular space for lowering the pressure of the mixed fluid discharged from s
    Type: Application
    Filed: March 14, 2008
    Publication date: July 1, 2010
    Applicant: NATIONAL UNIVERSITY CORPORATION OKAYAMA UNIVERSITY
    Inventors: Hidekazu Yoshizawa, Eiji Kamio