Patents by Inventor Eilif Benjamin Muller
Eilif Benjamin Muller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240370713Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: ApplicationFiled: April 11, 2024Publication date: November 7, 2024Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Patent number: 11983620Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: GrantFiled: April 8, 2022Date of Patent: May 14, 2024Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Patent number: 11817220Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reconstructing and simulating neocortical microcircuitry. In one aspect, a method includes providing a model of neural tissue, the model including different types of neural cells and dynamic synaptic interconnections between the neural cells, changing a parameter in the model; and identifying a change in a computational state of the model of the neural tissue responsive to the change in the parameter. The change in the parameter can, e.g., change behavior of neural cells of at least one type, change interconnectivity between neural cells, or target a location within a volume in the model that interacts with multiple types of neural cells.Type: GrantFiled: October 10, 2017Date of Patent: November 14, 2023Assignee: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)Inventors: Henry Markram, Eilif Benjamin Muller, Sean Lewis Hill, Felix Schuermann
-
Publication number: 20220230052Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: ApplicationFiled: April 8, 2022Publication date: July 21, 2022Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Patent number: 11301750Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: GrantFiled: April 2, 2018Date of Patent: April 12, 2022Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Publication number: 20180285716Abstract: The simplification of neural network models is described. For example, a method for simplifying a neural network model includes providing the neural network model to be simplified, defining a first temporal filter for the conveyance of input from a neuron to an other spatially-extended neuron along the arborized projection, defining a second temporal filter for the conveyance of input from yet another neuron to the spatially-extended neuron along the arborized projection, replacing, in the neural network model, the first, spatially-extended neuron with a first, spatially-constrained neuron and the arborized projection with a first connection extending between the first, spatially-constrained neuron and the second neuron, wherein the first connection filters input from the second neuron in accordance with the first temporal filter and a second connection extending between the first spatially-constrained neuron and the third neuron.Type: ApplicationFiled: April 2, 2018Publication date: October 4, 2018Inventors: Henry Markram, Wulfram Gerstner, Marc-Oliver Gewaltig, Christian Rössert, Eilif Benjamin Muller, Christian Pozzorini, Idan Segev, James Gonzalo King, Csaba Erö, Willem Wybo
-
Publication number: 20180101660Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for reconstructing and simulating neocortical microcircuitry. In one aspect, a method includes providing a model of neural tissue, the model including different types of neural cells and dynamic synaptic interconnections between the neural cells, changing a parameter in the model; and identifying a change in a computational state of the model of the neural tissue responsive to the change in the parameter. The change in the parameter can, e.g., change behavior of neural cells of at least one type, change interconnectivity between neural cells, or target a location within a volume in the model that interacts with multiple types of neural cells.Type: ApplicationFiled: October 10, 2017Publication date: April 12, 2018Inventors: Henry Markram, Eilif Benjamin Muller, Sean Lewis Hill, Felix Schuermann
-
Patent number: 9165244Abstract: Computer-implemented methods, software, and systems for determining functional synapses from given structural touches between cells in a neuronal circuit are described. One computer-implemented method for determining functional synapses from predetermined synapses of connections between two cells in a neuronal circuit, includes determining, from the predetermined synapses, the functional synapses by leaving a portion of the connections unused, e.g. for activation by plasticity mechanisms.Type: GrantFiled: March 12, 2013Date of Patent: October 20, 2015Inventors: Michael Reimann, Henry Markram, Felix Schürmann, Eilif Benjamin Muller, Sean Lewis Hill, James Gonzalo King
-
Publication number: 20140108315Abstract: Computer-implemented methods, software, and systems for determining functional synapses from given structural touches between cells in a neuronal circuit are described. One computer-implemented method for determining functional synapses from predetermined synapses of connections between two cells in a neuronal circuit, includes determining, from the predetermined synapses, the functional synapses by leaving a portion of the connections unused, e.g. for activation by plasticity mechanisms.Type: ApplicationFiled: March 12, 2013Publication date: April 17, 2014Applicant: ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)Inventors: Michael Reimann, Henry Markram, Felix Schürmann, Eilif Benjamin Muller, Sean Lewis Hill, James Gonzalo King