Patents by Inventor Ekkehard Moessner

Ekkehard Moessner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230277662
    Abstract: The present invention generally relates to antibodies that bind to CD3, including multispecific antibodies e.g. for activating T cells. In addition, the present invention relates to polynucleotides encoding such antibodies, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the antibodies, and to methods of using them in the treatment of disease.
    Type: Application
    Filed: April 26, 2023
    Publication date: September 7, 2023
    Inventors: Anne FREIMOSER-GRUNDSCHOBER, Thomas HOFER, Ralf HOSSE, Ekkehard MOESSNER, Valeria G. NICOLINI, Pablo UMAÑA, Inja WALDHAUER, Wolfgang RICHTER, Alexander KNAUPP, Halina TROCHANOWSKA
  • Publication number: 20230265177
    Abstract: The invention provides humanized anti-human Tau(pS422) antibodies and methods of using the same.
    Type: Application
    Filed: December 29, 2022
    Publication date: August 24, 2023
    Inventors: Stefan Dengl, Thomas Emrich, Guy Georges, Ulrich Goepfert, Fiona Grueninger, Adrian Hugenmatter, Anton Jochner, Hubert Kettenberger, Joerg Moelleken, Ekkehard Moessner, Olaf Mundigl, Jens Niewoehner, Tilman Schlothauer, Michael Molhoj, Kevin Brady
  • Publication number: 20230212312
    Abstract: The present invention relates to trispecific antibodies binding to HER2 and a blood-brain barrier receptor (BBB-R), methods for their production, pharmaceutical compositions containing said antibodies, and uses thereof.
    Type: Application
    Filed: June 10, 2022
    Publication date: July 6, 2023
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Christian KLEIN, Julia KRUEGER, Ekkehard MOESSNER, Jens NIEWOEHNER
  • Patent number: 11685790
    Abstract: The present invention generally relates to antibodies that bind to STEAP-1, including bispecific antigen binding molecules e.g. for activating T cells. In addition, the present invention relates to polynucleotides encoding such antibodies, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the antibodies, and to methods of using them in the treatment of disease.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: June 27, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Thomas Hofer, Maximiliane Koenig, Ekkehard Moessner, Jens Niewoehner, Tina Weinzierl, Laurent Lariviere
  • Publication number: 20230192795
    Abstract: The present invention generally relates to mutant interleukin-7 polypeptides, immunoconjugates, particularly immunoconjugates comprising a mutant interleukin-7 polypeptide and an antibody that binds to PD-1. In addition, the invention relates to polynucleotide molecules encoding the mutant interleukin-7 polypeptides or the immunoconjugates, and vectors and host cells comprising such polynucleotide molecules. The invention further relates to methods for producing the mutant interleukin-7 polypeptides, immunoconjugates, pharmaceutical compositions comprising the same, and uses thereof.
    Type: Application
    Filed: April 13, 2021
    Publication date: June 22, 2023
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Laura Codarri Deak, Anne Freimoser-Grundschober, Christian Klein, Laura Lauener, Ekkehard Moessner, Cindy Schulenburg, Pablo Umaña, Eleni Maria Varypataki
  • Patent number: 11679127
    Abstract: The present invention generally relates to antigen binding receptors capable of specific binding to mutated Fc domains with reduced Fc receptor binding and T cells expressing these antigen binding receptors. More precisely, the present invention relates to T cells, transfected/transduced with an antigen binding receptor which is recruited by specifically binding to/interacting with the mutated Fc domain of therapeutic antibodies. Furthermore, the invention relates to a kit comprising the T cells of the invention and/or nucleic acid molecules, vectors expressing antigen binding receptors of the present invention and (a) tumor targeting antibody/antibodies comprising a mutated Fc domain.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: June 20, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Kay-Gunnar Stubenrauch, Ekkehard Moessner, Christian Klein, Diana Darowski
  • Patent number: 11672858
    Abstract: The present invention generally relates to antibodies that bind to CD3, including multispecific antibodies e.g. for activating T cells. In addition, the present invention relates to polynucleotides encoding such antibodies, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the antibodies, and to methods of using them in the treatment of disease.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 13, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Anne Freimoser-Grundschober, Thomas Hofer, Ralf Hosse, Ekkehard Moessner, Valeria G. Nicolini, Pablo Umaña, Inja Waldhauer, Wolfgang Richter, Alexander Knaupp, Halina Trochanowska
  • Publication number: 20230159642
    Abstract: The present invention relates to antibodies that bind to human HLA-G, multispecific antibodies thereof, their preparation, formulations, and methods of using the same.
    Type: Application
    Filed: October 18, 2022
    Publication date: May 25, 2023
    Inventors: Alexander BUJOTZEK, Alejandro CARPY GUTIERREZ CIRLOS, Anne FREIMOSER-GRUNDSCHOBER, Carina HAGE, Thomas HOFER, Silke KIRCHNER, Meher MAJETY, Ekkehard MOESSNER, Christiane NEUMANN, Christian SPICK, Georg TIEFENTHALER, Thomas WEINDL
  • Publication number: 20230131782
    Abstract: Herein is reported a method for determining the epitope of an antibody specifically binding to a therapeutic antibody comprising the steps of a) incubating a sample, which comprises serum and the antibody specifically binding to a therapeutic antibody, separately with i) at least a Fab fragment of the therapeutic antibody, and ii) at least a Fab fragments of the therapeutic antibody in which the HVRs forming a paratope have been replaced with germline sequences, and detecting the binding or non-binding of the antibody specifically binding to a therapeutic antibody to the at least a Fab fragment in any of i) to ii), and b) determining the epitope of the antibody specifically binding to a therapeutic antibody to be in the at least one HVR that has been replaced in ii) if binding is detected in i) and non-binding is detected in ii).
    Type: Application
    Filed: June 30, 2022
    Publication date: April 27, 2023
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Roland BECKMANN, Ekkehard MOESSNER, Kay-Gunnar STUBENRAUCH
  • Publication number: 20230123178
    Abstract: The invention relates to novel TNF family ligand trimer-containing antigen binding molecules having at least one moiety capable of specific binding to PD1 and a first and a second polypeptide that are linked to each other by a disulfide bond, the first polypeptide having two ectodomains of a TNF ligand family member or fragments thereof that are connected to each other by a peptide linker and the second polypeptide having a single ectodomain of the same TNF ligand family member or a fragment thereof.
    Type: Application
    Filed: January 28, 2022
    Publication date: April 20, 2023
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Claudia Ferrara Koller, Christina Claus, Christian Klein, Stefan Seeber, Maria Amann, Sandra Grau-Richards, Peter Bruenker, Pablo Umana, Viktor Levitski, Ekkehard Moessner
  • Patent number: 11608376
    Abstract: The present invention relates to tumor targeted bispecific agonistic antigen binding molecules characterized by monovalent binding to CD28, methods for their production, pharmaceutical compositions containing these antibodies, and methods of using the same.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: March 21, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Guy Georges, Thomas Hofer, Ralf Hosse, Christian Klein, Ekkehard Moessner, Johannes Sam, Pablo Umaña, Jenny Thom, Stephan Gasser, Jean-Baptiste Vallier, Tanja Fauti
  • Publication number: 20230076791
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: May 25, 2022
    Publication date: March 9, 2023
    Inventors: Marina BACAC, Thomas HOFER, Ralf HOSSE, Christiane NEUMANN, Christian KLEIN, Ekkehard MOESSNER, Pablo UMANA, Tina WEINZIERL
  • Patent number: 11591397
    Abstract: The present invention generally relates to antibodies that bind to CD3, including multi specific antibodies e.g. for activating T cells. In addition, the present invention relates to polynucleotides encoding such antibodies, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the antibodies, and to methods of using them in the treatment of disease.
    Type: Grant
    Filed: September 14, 2021
    Date of Patent: February 28, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Anne Freimoser-Grundschober, Thomas Hofer, Ralf Hosse, Ekkehard Moessner, Valeria G. Nicolini, Pablo Umaña, Inja Waldhauer, Wolfgang Richter, Alexander Knaupp, Halina Trochanowska
  • Patent number: 11583575
    Abstract: The disclosure provides compositions comprising at least one assembly comprising a peptide and a major histocompatibility complex (MHC), wherein the peptide is an integral component of the MHC, wherein the peptide is attached to a surface at its C-terminus through a linker and wherein the peptide is synthesized on the surface. In certain embodiments, the compositions comprise a plurality of assemblies in a spatially-ordered array. The disclosure provides methods for making and using these compositions.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: February 21, 2023
    Assignees: Roche Sequencing Solutions, Inc., Hoffmann-La Roche Inc.
    Inventors: Christian Klein, Hanying Li, Victor Lyamichev, Ekkehard Moessner, Jigar Patel
  • Patent number: 11572404
    Abstract: The invention provides humanized anti-human Tau(pS422) antibodies and methods of using the same.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: February 7, 2023
    Assignee: Hoffman-La Rocher Inc.
    Inventors: Stefan Dengl, Thomas Emrich, Guy Georges, Ulrich Goepfert, Fiona Grueninger, Adrian Hugenmatter, Anton Jochner, Hubert Kettenberger, Joerg Moelleken, Ekkehard Moessner, Olaf Mundigl, Jens Niewoehner, Tilman Schlothauer, Michael Molhoj, Kevin Brady
  • Publication number: 20220411534
    Abstract: The present invention generally relates to antibodies that bind to HLA-A2/WT1, including bispecific antigen binding molecules e.g. for activating T cells. In addition, the present invention relates to polynucleotides encoding such antibodies, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the antibodies, and to methods of using them in the treatment of disease.
    Type: Application
    Filed: November 4, 2021
    Publication date: December 29, 2022
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Joerg Benz, Christian Klein, Stefan Klostermann, Ekkehard Moessner, Johannes Sam, Pablo Umaña, Lydia Jasmin Hanisch, Alexander Bujotzek, Wei Xu
  • Patent number: 11525007
    Abstract: The present invention relates to modified antibodies. In particular, the present invention relates to recombinant monoclonal antibodies having altered ability to induce direct cell death and effector function. In addition, the present invention relates to nucleic acid molecules encoding such antibodies, and vectors and host cells comprising such nucleic acid molecules. The invention further relates to methods for producing the antibodies of the invention, and to methods of using these antibodies in treatment of disease.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 13, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Peter Bruenker, Frank Herting, Sylvia Herter, Christian Klein, Ekkehard Moessner, Tilman Schlothauer
  • Patent number: 11459404
    Abstract: The present invention generally relates to bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: October 4, 2022
    Assignee: Roche Glycart AG
    Inventors: Marina Bacac, Peter Bruenker, Christiane Neumann, Christian Klein, Ekkehard Moessner, Pablo Umana, Tina Weinzierl
  • Patent number: 11440971
    Abstract: Herein is reported an IgG class Fc-region comprising a first variant Fc-region polypeptide and a second variant Fc-region polypeptide, wherein a) the first variant Fc-region polypeptide is derived from a first parent IgG class Fc-region polypeptide and the second variant Fc-region polypeptide is derived from a second parent IgG class Fc-region polypeptide, whereby the first parent IgG class Fc-region polypeptide is identical to or different from the second parent IgG class Fc-region polypeptide, and b) the first variant Fc-region polypeptide differs from the second variant Fc-region polypeptide in one or more amino acid residues other than those amino acid residues in which the first parent IgG class Fc-region polypeptide differs from the second parent IgG class Fc-region polypeptide, and c) the IgG class Fc-region comprising the first variant Fc-region polypeptide and the second variant Fc-region polypeptide has an affinity to a human Fc-receptor that is different than that of an IgG class Fc-region comprisi
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: September 13, 2022
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Ekkehard Moessner, Tilman Schlothauer
  • Publication number: 20220281995
    Abstract: The invention provides antibodies against Fibroblast Activation Protein (FAP) and methods of using the same.
    Type: Application
    Filed: May 13, 2022
    Publication date: September 8, 2022
    Applicant: Roche Glycart AG
    Inventors: Marina BACAC, Anne FREIMOSER-GRUNDSCHOBER, Ralf HOSSE, Christian KLEIN, Ekkehard MOESSNER, Valeria G. NICOLINI, Pablo UMANA