Patents by Inventor Eleftherios Karipidis

Eleftherios Karipidis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10630410
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: April 21, 2020
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200120482
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: December 13, 2019
    Publication date: April 16, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali ASHRAF, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik BERG, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali el Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Niklas Johansson, Martin Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landstrom, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20200028745
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 16, 2019
    Publication date: January 23, 2020
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20190296838
    Abstract: A method of operating a UE includes obtaining an interference measurement (IM) resource, performing an interference measurement using the IM resource, obtaining a time reference associated with the interference measurement, determining that the interference measurement represents a non-typical level of interference, and transmitting an indicator indicating the time reference to a network node. Related nodes, devices and computer program products are disclosed.
    Type: Application
    Filed: October 31, 2017
    Publication date: September 26, 2019
    Inventors: Martin HESSLER, Svante BERGMAN, Jonas FRÖBERG OLSSON, Eleftherios KARIPIDIS
  • Patent number: 10367677
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: July 30, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rul Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskár, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanil Zheng
  • Publication number: 20190215135
    Abstract: Methods and devices enable a fine synchronization related to a data transmission on a physical channel. A fine timing reference signal is occasionally transmitted to the data transmission recipient using one of time-frequency resources in a recipient-specific pattern.
    Type: Application
    Filed: March 15, 2019
    Publication date: July 11, 2019
    Inventors: Robert BALDEMAIR, Eleftherios KARIPIDIS, Stefan PARKVALL, Henrik SAHLIN
  • Publication number: 20190215049
    Abstract: According to certain embodiments, a method in a network node is provided for adaptive initial synchronization beam sweep transmission. The method includes transmitting a plurality of initial synchronization beams with at least two different beam sweep cycles. At least one beam sweep cycle is an exhaustive beam sweep cycle and at least one beam sweep cycle is an optimized beam sweep cycle. The exhaustive beam sweep cycle covers all of a serving area of the cell and the optimized beam sweep cycle covers a subset of the serving area.
    Type: Application
    Filed: July 28, 2017
    Publication date: July 11, 2019
    Inventors: Igor Moaco GUERREIRO, Johan AXNÃS, Robert BALDEMAIR, Dennis HUI, Eleftherios KARIPIDIS
  • Patent number: 10341894
    Abstract: Techniques, such as might be implemented in a wireless device operating in a wireless network, for reporting measurements of interference affecting a wireless service provided by the wireless network. An example method includes receiving (210), from the wireless network, configuration information instructing the wireless device to perform measurements on one or more radio resources or signals, where the one or more radio resources or signals are solely associated with one or more wireless services that the wireless device is at least currently unable to use. The method further includes performing (220) one or more measurements on the radio resources or signals, in accordance with the received configuration information, and selectively reporting (230) results of the measurements, based on the configuration information.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: July 2, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Gunnar Mildh, Joakim Axmon, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Joachim Sachs
  • Publication number: 20190158345
    Abstract: Methods performed by a wireless device operating in a dormant mode comprise performing a measurement on each of a plurality of resources from a predetermined set of resources or demodulating and decoding information from each of a plurality of resources from a predetermined set of resources, such as a set of beams. The methods further include evaluating the measurement or the demodulated and decoded information for each of the plurality of resources against a predetermined criterion, and then discontinuing the performing and evaluating of measurements, or discontinuing the demodulating and decoding and evaluation of information, in response to determining that the predetermined criterion is met, such that one or more resources in the predetermined set of resources are neither measured nor demodulated and decoded. The methods further comprise deactivating receiver circuitry, further in response to determining that the predetermined criterion is met.
    Type: Application
    Filed: May 12, 2017
    Publication date: May 23, 2019
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Patent number: 10251140
    Abstract: In one aspect of the teachings herein, a radio network node advantageously adapts the transmission duration of a synchronization signal with respect to transmission of the synchronization signal in different directions. For example, the radio network node uses a shorter transmission duration in beam directions that are associated with better reception conditions and a longer transmission duration in beam directions that are associated with poorer reception conditions. As a consequence of varying the transmission duration according to received-signal qualities known or expected for the different directions, the radio network node can shorten the overall time needed to complete one synchronization-signal transmission cycle and use less energy, as compared to using a more conservative, longer transmission time in all beam directions.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: April 2, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Johan Axnäs, Robert Baldemair, Igor Moaco Guerreiro, Dennis Hui, Eleftherios Karipidis
  • Patent number: 10211904
    Abstract: A communication entity includes an antenna array with different antennas for transmitting and receiving. A combined transmission signal is generated by superposition of the transmission signals from the different antennas. Power amplifiers are each connected to one antenna. A control unit controls an input signal of each power amplifier and generates a directional combined transmission signal by controlling the phase and amplitude of each antenna. The control unit determines a total output power for the directional combined transmission signal, and determines a saturation state in which at least one power amplifier of the connected antenna is operating in a saturation state at maximum power. When the saturation state is detected, the control unit controls an input signal of at least one non-saturated power amplifier so the power emitted by at least one corresponding antenna connected to the at least one non-saturated power amplifier is increased.
    Type: Grant
    Filed: April 19, 2016
    Date of Patent: February 19, 2019
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Martin Hessler, Eleftherios Karipidis, Sven Petersson
  • Publication number: 20190052505
    Abstract: A wireless device, a network node and methods performed by the wireless device and the network node for providing a guard interval for transmissions in a communication system are presented. The network node (301, 401) receives a signal (307, 407) transmitted by the wireless device (305, 405) and obtains a series of symbols (311a,b, 411a-g) from the received signal. In one exemplary embodiment, a method by the wireless device in a wireless communication system includes generating (705) the signal comprising the series of symbols, including a pair of consecutive symbols (311a,b, 411e,f, 411f,g) that are to be transmitted at different power levels, with power ramping (316, 416, 418) to occur over a power transition period (315, 415, 417) between the consecutive symbols. Further, the method includes transmitting (707) the transmit signal with a guard interval (313, 413a,b) overlapping at least partly with the power transition period.
    Type: Application
    Filed: February 17, 2017
    Publication date: February 14, 2019
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Robert Baldemair, Martin Hessler, George Jöngren, Eleftherios Karipidis, Lars Lindbom
  • Publication number: 20190020456
    Abstract: The invention relates to a method for allocating an uplink reference signal to a user equipment, UE, located in a cell area comprising one or a plurality of cells served by one or a plurality of access nodes, comprising the steps of determining one or a plurality of active applications of the UE, determining a traffic characteristic associated to the one or the plurality of active applications, associating a priority level to the UE, wherein the priority level is based on the traffic characteristic, and allocating an uplink reference signal to the UE based determine traffic description on the priority level; the invention further relates to a corresponding access point and a computer program.
    Type: Application
    Filed: December 30, 2015
    Publication date: January 17, 2019
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Vidit Saxena, Gabor Fodor, Eleftherios Karipidis, Yngve Selén
  • Patent number: 10135500
    Abstract: Techniques for determining beam-sweeping patterns for synchronization signals transmitted in a region by several access nodes in a network, where each access node is connected to a corresponding array of antenna elements. An example method includes modeling a total power function for the power transmitted in the synchronization signals, as a factor graph having a plurality of check nodes and variable nodes, each check node corresponding to a virtual wireless device in the region and each variable node corresponding to an available beam for an access node. The virtual wireless devices are emulated so as to implement quality-of-service constraints on synchronization signals received by the virtual wireless devices. An iterative message-passing algorithm, such as a min-sum algorithm, is applied to the modeled total power function, to determine a sequence of power levels, for each access node, for sweeping synchronization signal beams, so as to minimize the total power function.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: November 20, 2018
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Igor Moaco Guerreiro, Johan Axnäs, Robert Baldemair, Dennis Hui, Eleftherios Karipidis
  • Publication number: 20180302906
    Abstract: Embodiments herein relate to a method performed by a wireless device (10) for managing communication of the wireless device (10) in a wireless communications network (1). The wireless device determines at least two waveform parameters based on a metric of the wireless device (10), for communicating data between the wireless device (10) and a radio network node (12) in the wireless communications network (1). The wireless device (10) further transmits an indication indicating the at least two determined waveform parameters to the radio network node (12).
    Type: Application
    Filed: March 8, 2017
    Publication date: October 18, 2018
    Inventors: Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Bo Lincoln, Torgny Palenius, Eliane Semaan
  • Publication number: 20180288641
    Abstract: Techniques, such as might be implemented in a wireless device operating in a wireless network, for reporting measurements of interference affecting a wireless service provided by the wireless network. An example method includes receiving (210), from the wireless network, configuration information instructing the wireless device to perform measurements on one or more radio resources or signals, where the one or more radio resources or signals are solely associated with one or more wireless services that the wireless device is at least currently unable to use. The method further includes performing (220) one or more measurements on the radio resources or signals, in accordance with the received configuration information, and selectively reporting (230) results of the measurements, based on the configuration information.
    Type: Application
    Filed: December 22, 2016
    Publication date: October 4, 2018
    Inventors: Gunnar MILDH, Joakim AXMON, Martin HESSLER, Eleftherios KARIPIDIS, Torgny PALENIUS, Joachim SACHS
  • Patent number: 10075225
    Abstract: A method, in a transmitting device having a plurality of transmitter antennas, for selecting antenna beam-forming precoding vectors for transmissions is provided. The method comprises transmitting to a receiving device at a first time, using a first beam-forming precoding vector that maps symbols to be transmitted to the plurality of transmitter antennas. The method further comprises determining, prior to transmitting to the receiving device at a second time, whether an elapsed time since the first time exceeds a first threshold. The method further comprises selecting one of at least two beam-forming precoding vectors for use in transmitting to the receiving device at the second time, based on said determining. Then, transmitting to the receiving device at the second time, using the selected one of the at least two beam-forming precoding vectors. There is also provided a transmitting device.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: September 11, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Martin Hessler, Eleftherios Karipidis, Sven Petersson
  • Publication number: 20180234153
    Abstract: Techniques disclosed herein include a method carried out by a wireless device (1000) operating in a wireless communications network, where the method includes determining (710) a reporting quality threshold for a parameter related to channel state information, CSI, and performing (720) a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation. The method further includes evaluating (730) the measurement for each of the plurality of beams against the reporting quality threshold, and discontinuing (740) the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that measurements are not performed and evaluated for one or more beams in the first predetermined set of beams. The method further includes reporting (750) the CSI for the one of the beams to the wireless communications network.
    Type: Application
    Filed: May 11, 2017
    Publication date: August 16, 2018
    Inventors: Bo Lincoln, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Torgny Palenius, Eliane Semaan
  • Publication number: 20180227166
    Abstract: In an aspect, a wireless device with a plurality of transmitter chains that can be selectively used to transmit a beam-formed signal determines a targeted receive power for the beam-formed signal, with respect to a target receiving device. The wireless device selects a number of the plurality of transmitter chains for forming the beam-formed signal, based on the targeted receive power and based on an estimated power consumption for each of the plurality of transmitter chains. The selection is performed so as to minimize a total power consumption, given the estimated power consumptions. The wireless device transmits a beam-formed signal, using the selected number of the plurality of transmitter chains.
    Type: Application
    Filed: May 11, 2017
    Publication date: August 9, 2018
    Inventors: Torgny Palenius, Robert Baldemair, Martin Hessler, Eleftherios Karipidis, Bo Lincoln, Eliane Semaan
  • Publication number: 20180091211
    Abstract: A communication entity includes an antenna array with different antennas for transmitting and receiving. A combined transmission signal is generated by superposition of the transmission signals from the different antennas. Power amplifiers are each connected to one antenna. A control unit controls an input signal of each power amplifier and generates a directional combined transmission signal by controlling the phase and amplitude of each antenna. The control unit determines a total output power for the directional combined transmission signal, and determines a saturation state in which at least one power amplifier of the connected antenna is operating in a saturation state at maximum power. When the saturation state is detected, the control unit controls an input signal of at least one non-saturated power amplifier so the power emitted by at least one corresponding antenna connected to the at least one non-saturated power amplifier is increased.
    Type: Application
    Filed: April 19, 2016
    Publication date: March 29, 2018
    Inventors: Martin HESSLER, Eleftherios KARIPIDIS, Sven PETERSSON