Patents by Inventor Emmanuel Delamarche

Emmanuel Delamarche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10391488
    Abstract: A microfluidic probe head for providing a sequence of separate liquid volumes separated by spacers, the separate liquid volumes including a respective target substance associated with a respective target area, the microfluidic probe head including an inlet and an outlet; a first fluid channel fluidly connected to the inlet, the first fluid channel configured for delivering an injection liquid from the inlet to a respective target area; a second fluid channel fluidly connected to the outlet, the second fluid channel configured for delivering liquid volumes from the respective target area to the outlet; and a spacer insertion unit fluidly connected to the second fluid channel, the spacer insertion unit configured for inserting spacers into the second fluid channel between the liquid volumes to provide the sequence of separate liquid volumes separated by spacers.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Julien Autebert, Emmanuel Delamarche, Govind Kaigala, Aditya Kashyap, Xander Frank Van Kooten
  • Patent number: 10369567
    Abstract: A microfluidic chip comprising a microchannel fillable with a liquid, the microchannel comprises a pair of electrodes, and a liquid flow path defined between the electrodes, wherein each of the electrodes extends along the flow path and parallel to a direction of a liquid filling the microchannel, in operation, and an electrical circuitry connected to each of the electrodes and configured to continuously measure, via the electrodes, a capacitance of the electrodes being wet by a liquid continuously filling the flow path, as a function of time, in operation.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 6, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10357770
    Abstract: A microfluidic probe is disclosed. The microfluidic probe includes a probe head, a liquid spacer supply and a spacer modulation unit. The probe head may include a processing liquid channel in fluid communication with a processing liquid aperture provided on a face of the probe head. The probe head is configured to transport, circulate, recirculate, or move some processing liquid in (or via) the processing liquid channel toward and/or from the processing liquid aperture. The spacer supply is fluidly connected, via a spacer insertion junction, to the processing liquid channel. The spacer supply is configured for inserting liquid spacers into the processing liquid channel, via the spacer insertion junction. Liquid volumes can be obtained, which are separated by inserted liquid spacers. The spacer modulation unit is configured to control the spacer supply, to modulate the insertion of spacers via the spacer supply. Related devices and methods of operation are disclosed.
    Type: Grant
    Filed: October 9, 2015
    Date of Patent: July 23, 2019
    Assignee: International Business Machines Corporation
    Inventors: Julien Autebert, Julien Cors, Emmanuel Delamarche, Govind Kaigala, Xander Frank Van Kooten
  • Patent number: 10343161
    Abstract: The invention is directed to a microfluidic device. The device includes an input microchannel, a set of m distribution microchannels, a set of m microfluidic modules and a set of m nodes. The m microfluidic modules (m?2) are in fluidic communication with the m distribution microchannels, respectively. The one or more nodes of the set of m nodes branch from the input microchannel, and further branch to a respective one of the set of m distribution microchannels. In addition, a subset, but not all, of the nodes are altered. The nodes of the set of m nodes have different liquid pinning strengths. As a result, the extent in which a liquid passes through one or more of the m microfluidic modules varies based on the different liquid pinning strengths, in operation. Additional sets of nodes may be provided to allow liquid to pass through ordered pairs of modules.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Onur Gökçe
  • Patent number: 10345244
    Abstract: A test device is configured for diagnostic testing and includes an optical readable medium, in turn including a pattern of spots of material arranged on a surface of the device. Several patterns may be provided. The patterns accordingly formed may be human and/or machine readable. They may notably encode security information, e.g., indicating whether the device has already been used. The spots may notably be inkjet spotted. In addition, a method is provided for decoding information encoded in a pattern of such a test device. In embodiments, liquid is introduced in the device, which comprises additional spots having a substantially different solubility than spots forming the actual pattern. Thus, the additional spots get solubilized in and flushed by the liquid as the latter wets them, and an initially hidden pattern may be read, which is formed of the remaining spots (not solubilized). Encoding methods are also provided.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Onur Goekce, Yuksel Temiz
  • Publication number: 20190143321
    Abstract: The present invention is notably directed to method of fabrication of a microfluidic chip, comprising: providing a substrate, a face of which is covered by an electrically insulating layer; obtaining a resist layer covering one or more selected portions of the electrically insulating layer, at least a remaining portion of said electrically insulating layer not being covered by the resist layer; partially etching with a wet etchant a surface of the remaining portion of the electrically insulating layer to create a recess and/or an undercut under the resist layer; depositing the electrically conductive layer on the etched surface, such that the electrically conductive layer reaches the created recess and/or undercut; and removing the resist layer to expose a portion of the electrically insulating layer adjoining a contiguous portion of the electrically conductive layer. The present invention is further directed to microfluidic chips obtainable by such methods.
    Type: Application
    Filed: December 24, 2018
    Publication date: May 16, 2019
    Inventors: Emmanuel Delamarche, TOBIAS GUENZLER, Yuksel Temiz, Tino Treiber
  • Publication number: 20190094178
    Abstract: The invention is notably directed to a microfluidic device. The device comprises a substrate with a microchannel formed as a groove on a main surface of the substrate. The device further comprises one or more conduits extending parallel to the main surface of the substrate, and from a lateral surface of the substrate up to a lateral wall of the microchannel. The one or more conduits are configured so as to allow insertion of one or more electrodes therein, respectively, and such that an end of each of the one or more electrodes can reach into the microchannel. The invention is further directed to related sets of components, which include the above microfluidic device, as well as a housing, with electronics, and, possibly, a porous support (e.g., a membrane) and a cap. Biosensing applications are notably contemplated. The invention is further directed to methods of operating a microfluidic device.
    Type: Application
    Filed: September 28, 2017
    Publication date: March 28, 2019
    Inventors: Emmanuel Delamarche, Yuksel Temiz, Sufi Zafar
  • Publication number: 20180369809
    Abstract: The invention is directed to a microfluidic device, which comprises distinct, parallel levels, including a first level and a second level. It further includes: a first microchannel, a second microchannel, and a node. This node comprises: an inlet port, a cavity, a via, and an outlet port. The cavity is formed on the first level and is open on a top side. The inlet port is defined on the first level; it branches from the first microchannel and communicates with the cavity through an ingress thereof. The outlet port, branches to the second microchannel on the second level. The via extends from the bottom side of the cavity, down to the outlet port, so the cavity may communicate with the outlet port. In addition, the cavity comprises a liquid blocking element to prevent an aqueous liquid filling the inlet port to reach the outlet port.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Emmanuel Delamarche, Onur Gökçe
  • Publication number: 20180372765
    Abstract: A method for optically reading information encoded in a microfluidic device, the microfluidic device including an input microchannel, microfluidic modules, and sets of nodes. Nodes of a first set connect the input microchannel to one of the microfluidic modules, and nodes of a second set connect the one of the microfluidic modules to another to form an ordered pair of the microfluidic modules, where the nodes of the first and second sets have different liquid pinning strengths. A liquid loaded into the input microchannel causes an ordered passage of the liquid through each of the microfluidic modules in an order determined by the liquid pinning strengths of the nodes. The passage of the liquid produces an optically readable dynamic pattern which evolves in accordance with the ordered passage of the liquid through the device.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Emmanuel Delamarche, Onur Gökçe
  • Publication number: 20180369813
    Abstract: The invention is directed to a microfluidic device. The device includes an input microchannel, a set of m distribution microchannels, a set of m microfluidic modules and a set of m nodes. The m microfluidic modules (m?2) are in fluidic communication with the m distribution microchannels, respectively. The one or more nodes of the set of m nodes branch from the input microchannel, and further branch to a respective one of the set of m distribution microchannels. In addition, a subset, but not all, of the nodes are altered. The nodes of the set of m nodes have different liquid pinning strengths. As a result, the extent in which a liquid passes through one or more of the m microfluidic modules varies based on the different liquid pinning strengths, in operation. Additional sets of nodes may be provided to allow liquid to pass through ordered pairs of modules.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Emmanuel Delamarche, Onur Gökçe
  • Patent number: 10159976
    Abstract: The present invention is notably directed to method of fabrication of a microfluidic chip (1), comprising: providing (S1-S7) a substrate (10), a face (F) of which is covered by an electrically insulating layer (30); obtaining (S8) a resist layer (40) covering one or more selected portions (P1) of the electrically insulating layer (30), at least a remaining portion (P2) of said electrically insulating layer (30) not being covered by the resist layer; partially etching (S9) with a wet etchant (E) a surface of the remaining portion (P2) of the electrically insulating layer (30) to create a recess (40r) and/or an undercut (40u) under the resist layer (40); depositing (S10) the electrically conductive layer (50) on the etched surface (35), such that the electrically conductive layer reaches the created recess (40r) and/or undercut (40u); and removing (S11) the resist layer (40) to expose a portion (P1) of the electrically insulating layer adjoining a contiguous portion (P2) of the electrically conductive layer (50
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: December 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Tobias Guenzler, Yuksel Temiz, Tino Treiber
  • Publication number: 20180361380
    Abstract: The present invention is notably directed to methods of fabrication of a microfluidic chip package or assembly (1), comprising: providing (S1) a substrate (10, 30) having at least one block (14, 14a) comprising one or more microfluidic structures on a face (F) of the substrate; partially cutting (S2) into the substrate to obtain partial cuts (10c), such that a residual thickness of the substrate at the level of the partial cuts (10c) enables singulation of said at least one block (14, 14a); cleaning (S4) said at least one block; and applying (S5-S7) a cover-film (62) to cover said at least one block (14, 14a), whereby at least one covered block is obtained, the applied cover film still enabling singulation of each covered block, wherein each covered block corresponds to a microfluidic chip after singulation. The present invention is further directed to microfluidic chips, packing or assembly, obtainable with such methods.
    Type: Application
    Filed: August 27, 2018
    Publication date: December 20, 2018
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10155923
    Abstract: A microorganism culture device and a method of using the device. The device includes an open chamber, wherein microorganisms are likely to be deposited within a liquid for subsequent study. The open chamber simplifies the deposition of the microorganisms. The chamber is further provided with retention features, whereby microorganisms can be retained therein. In addition, the device includes an overflow area, wherein capillary structures are configured to retain excess liquid overflowing from the open chamber, e.g. when covering the device with a cover. As such, it allows for confining microorganism in the chamber, while excess fluid is captured externally, e.g. to seal the device with a cover.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: December 18, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Robert Lovchik
  • Patent number: 10112193
    Abstract: The present invention is notably directed to methods of fabrication of a microfluidic chip package or assembly (1), comprising: providing (S1) a substrate (10, 30) having at least one block (14, 14a) comprising one or more microfluidic structures on a face (F) of the substrate; partially cutting (S2) into the substrate to obtain partial cuts (10c), such that a residual thickness of the substrate at the level of the partial cuts (10c) enables singulation of said at least one block (14, 14a); cleaning (S4) said at least one block; and applying (S5-S7) a cover-film (62) to cover said at least one block (14, 14a), whereby at least one covered block is obtained, the applied cover film still enabling singulation of each covered block, wherein each covered block corresponds to a microfluidic chip after singulation. The present invention is further directed to microfluidic chips, packing or assembly, obtainable with such methods.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: October 30, 2018
    Assignee: International Business Machines Corporation
    Inventors: Emmanuel Delamarche, Yuksel Temiz
  • Publication number: 20180272348
    Abstract: Method, apparatus, and computer program product for a microfluidic channel having a cover opposite its bottom, such that the cover allows visual inspection inside the channel, and having electrodes with patterned planar conducting materials, integrated onto its bottom. Using the planar conducting materials, once a fluid sample with suspended microparticles is applied into the channel, highly localized modulated electric field distributions are generated inside the channel and the fluid sample. This generated field causes the inducing of dielectrophoretic (DEP) forces in such a way that the DEP forces gradually increase along the length of the channel occupied by the electrodes. These DEP forces counteract the hydrodynamic drag of the flow acting on the particles suspended in the fluid.
    Type: Application
    Filed: March 21, 2017
    Publication date: September 27, 2018
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Yuksel Temiz
  • Patent number: 10081015
    Abstract: A device for trapping at least one microparticle in a fluid flow is suggested. The device comprises a trapping element and an electrode. The trapping element is configured for trapping the at least one microparticle and has at least one recess for receiving the at least one microparticle. The electrode is configured for generating an asymmetric electric field. In operation, at least one microparticle of a plurality of microparticles passing through the asymmetric electric field is forced into the at least one recess of the trapping element.
    Type: Grant
    Filed: July 12, 2015
    Date of Patent: September 25, 2018
    Assignee: International Business Machines Corporation
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Claudius Feger, Yuksel Temiz
  • Publication number: 20180240134
    Abstract: Methods are provided for producing an authenticated packaged product. A digital signature, dependent on unique message data for the product, is generated via a digital signature scheme using a secret signing key. The message data is provided on at least one of the product and packaging. The digital signature is provided on the other of the product and packaging, and the product is packed in the packaging. The digital signature can be generated via a fuzzy-message digital signature scheme having a verification algorithm for verifying the digital signature in relation to fuzzy data within a predetermined difference measure of the message data. Methods and systems for authenticating such packaged products are also provided.
    Type: Application
    Filed: December 30, 2017
    Publication date: August 23, 2018
    Inventors: Jan L. Camenisch, Emmanuel Delamarche, Eduarda Freire-Stögbuchner, Onur Goekce
  • Publication number: 20180240132
    Abstract: Methods are provided for producing an authenticated packaged product. A digital signature, dependent on unique message data for the product, is generated via a digital signature scheme using a secret signing key. The message data is provided on at least one of the product and packaging. The digital signature is provided on the other of the product and packaging, and the product is packed in the packaging. The digital signature can be generated via a fuzzy-message digital signature scheme having a verification algorithm for verifying the digital signature in relation to fuzzy data within a predetermined difference measure of the message data. Methods and systems for authenticating such packaged products are also provided.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Jan L. Camenisch, Emmanuel Delamarche, Eduarda Freire-Stögbuchner, Onur Goekce
  • Patent number: 9962714
    Abstract: A microchannel for processing microparticles in a fluid flow comprises a first and second pairs of electrodes. The first pair of electrodes is configured for generating an asymmetric first electric field and for sorting the microparticles to provide sorted microparticles. The second pair of electrodes is configured for generating an asymmetric second electric field and for trapping at least some of the sorted microparticles.
    Type: Grant
    Filed: July 12, 2015
    Date of Patent: May 8, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jaione Tirapu Azpiroz, Emmanuel Delamarche, Claudius Feger, Yuksel Temiz
  • Publication number: 20180103884
    Abstract: A diagnostic patch apparatus has a sampling module that includes sampling means for sampling fluid from a patient's skin when the sampling module is placed against the patient's skin, and a sample chamber coupled in fluid communication with the sampling means. The apparatus also has an analysis module that includes a fluid conduit coupled in fluid communication with the sample chamber of the sampling module and a plurality of sensors coupled in fluid communication with the fluid conduit. The apparatus also may have a reader module that includes at least one optical sensor coupled in optical communication with the analysis module, a microcontroller coupled in electrical communication with the at least one sensor of the analysis module, and a wireless communication package coupled in electrical communication with the microcontroller.
    Type: Application
    Filed: October 18, 2016
    Publication date: April 19, 2018
    Inventors: Emmanuel Delamarche, James L. Hedrick, Minhua Lu, Vince S. Siu