Patents by Inventor Emme M. Castiglione-Dodd

Emme M. Castiglione-Dodd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9744123
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: August 29, 2017
    Assignee: KENSEY NASH CORPORATION
    Inventors: Emme M. Castiglione-Dodd, Gino Bradioa, Ali Ebrahiml, Timothy A. Ringeisen
  • Patent number: 8633299
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: January 21, 2014
    Assignee: Kensey Nash BVF Technology LLC
    Inventors: Timothy A. Ringeisen, W. Christian Wattengel, Emme M. Castiglione-Dodd
  • Publication number: 20120328669
    Abstract: This invention includes malleable, biodegradable, fibrous compositions for application to a tissue site in order to promote or facilitate new tissue growth. One aspect of this invention is a fibrous component that provides unique mechanical and physical properties. The invention may be created by providing a vessel containing a slurry, said slurry comprising a plurality of natural or synthetic polymer fibers and at least one suspension fluid, wherein the polymer fibers are substantially evenly dispersed and randomly oriented throughout the volume of the suspension fluid; applying a force, e.g., centrifugal, to said vessel containing said slurry, whereupon said force serves to cause said polymer fibers to migrate through the suspension fluid and amass at a furthest extent of the vessel, forming a polymer material, with said polymer material comprising polymer fibers of sufficient length and sufficiently viscous, interlaced, or interlocked to retard dissociation of said polymer fibers.
    Type: Application
    Filed: May 25, 2012
    Publication date: December 27, 2012
    Inventors: Timothy A. Ringeisen, W. Christian Wattengel, Emme M. Castiglione-Dodd
  • Publication number: 20100330181
    Abstract: Tissue implants prepared for the repair of tissues, especially avascular tissues such as cartilage. One embodiment presents an electric potential capable of receiving and accumulating desirable factors or molecules from surrounding fluid when exposed to dynamic loading. In another embodiment the implant promotes tissue conduction by retarding, restricting and controlling cellular invasion through use of gradients until competent tissue forms. Further embodiments of the tissue implants may be formed into a multi-phasic device that provides deep tissue mechanical stimulus by conduction of mechanical and fluid forces experienced at the surface of the implant.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Inventors: Emme M. Castiglione-Dodd, Gino Bradioa, Ali Ebrahiml, Timothy A. Ringeisen