Patents by Inventor Erdem Karabulut

Erdem Karabulut has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210108098
    Abstract: The present invention relates to preparation and use of nanocellulose fibrils or crystals such as disintegrated bacterial nanocellulose, tunicate-derived nanocellulose, or plant-derived nanocellulose, together with carbon nanotubes, as a biocompatible and conductive ink for 3D printing of electrically conductive patterns. Biocompatible conductive bioinks described in this invention were printed in the form of connected lines onto wet or dried nanocellulose films, bacterial cellulose membrane, or tunicate decellularized tissue. The devices were biocompatible and showed excellent mechanical properties and good electrical conductivity through printed lines (3.8·10?1 S cm?1). Such scaffolds were used to culture neural cells. Neural cells attached selectively on the printed pattern and formed connective networks.
    Type: Application
    Filed: April 25, 2018
    Publication date: April 15, 2021
    Inventors: Paul Gatenholm, Erdem Karabulut
  • Publication number: 20200407577
    Abstract: The present invention relates to preparation and use of biocompatible and electrically conductive 3D hydrogels comprising nanocellulose fibrils, such as disintegrated bacterial nanocellulose, plant derived nanocellulose, tunicate derived nanocellulose, or algae derived nanocellulose, together with carbon nanotubes or graphene oxide, as a biocompatible and conductive 3D hydrogel for diagnostics and intervention to mimic or restore tissue and organ function. Biocompatible conductive 3D hydrogels described in this invention can be extruded, casted or injected. The 3D hydrogels described in this invention are cohesive 3D structures and provide electrical conductivity in wet form. 3D hydrogels described in this invention can be further crosslinked using divalent ions such as Calcium ions which improve mechanical stability. Such crosslinking can take place in an animal or human body in a physiological environment after injection into the tissue.
    Type: Application
    Filed: September 14, 2020
    Publication date: December 31, 2020
    Inventors: Paul Gatenholm, Erdem Karabulut
  • Patent number: 10774227
    Abstract: The present invention relates to preparation and use of nanocellulose fibrils or crystals such as disintegrated bacterial nanocellulose, tunicate-derived nanocellulose, or plant-derived nanocellulose, together with carbon nanotubes, as a biocompatible and conductive ink for 3D printing of electrically conductive patterns. Biocompatible conductive bioinks described in this invention were printed in the form of connected lines onto wet or dried nanocellulose films, bacterial cellulose membrane, or tunicate decellularized tissue. The devices were biocompatible and showed excellent mechanical properties and good electrical conductivity through printed lines (3.8·10?1 S cm?1). Such scaffolds were used to culture neural cells. Neural cells attached selectively on the printed pattern and formed connective networks.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: September 15, 2020
    Assignee: CELLHEAL AS
    Inventors: Paul Gatenholm, Erdem Karabulut