Patents by Inventor Erdinc Ozturk

Erdinc Ozturk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140205084
    Abstract: A method is described. The method includes executing one or more JH_SBOX_L instructions to perform S-Box mappings and a linear (L) transformation on a JH state and executing one or more JH_P instructions to perform a permutation function on the JH state once the S-Box mappings and the L transformation have been performed.
    Type: Application
    Filed: December 22, 2011
    Publication date: July 24, 2014
    Inventors: Gilbert M. Wolrich, Kirk S. Yap, Vinodh Gopal, James D. Guilford, Erdinc Ozturk, Sean M. Gulley, Wajdi K. Feghali, Martin G. Dixon
  • Patent number: 8781110
    Abstract: A system for performing public key encryption is provided. The system supports mathematical operations for a plurality of public key encryption algorithms such as Rivert, Shamir, Aldeman (RSA) and Diffie-Hellman key exchange (DH) and Elliptic Curve Cryptosystem (ECC). The system supports both prime fields and different composite binary fields.
    Type: Grant
    Filed: June 30, 2007
    Date of Patent: July 15, 2014
    Assignee: Intel Corporation
    Inventors: Vinodh Gopal, Erdinc Ozturk, Gilbert Wolrich, Wajdi K. Feghali
  • Publication number: 20140195782
    Abstract: A processor includes an instruction decoder to receive a first instruction to process a secure hash algorithm 2 (SHA-2) hash algorithm, the first instruction having a first operand associated with a first storage location to store a SHA-2 state and a second operand associated with a second storage location to store a plurality of messages and round constants. The processor further includes an execution unit coupled to the instruction decoder to perform one or more iterations of the SHA-2 hash algorithm on the SHA-2 state specified by the first operand and the plurality of messages and round constants specified by the second operand, in response to the first instruction.
    Type: Application
    Filed: March 30, 2012
    Publication date: July 10, 2014
    Inventors: Kirk S. Yap, Gilbert M. Wolrich, James D. Guilford, Vinodh Gopal, Erdinc Ozturk, Sean M. Gulley, Wajdi K. Feghali, Martin G. Dixon
  • Publication number: 20140195817
    Abstract: A method is described that includes performing the following within an instruction execution pipeline implemented on a semiconductor chip: summing three input vector operands through execution of a single instruction; and, not raising any arithmetic flags even though a result of the summing creates more bits than circuitry designed to transport the summation is able to transport.
    Type: Application
    Filed: December 23, 2011
    Publication date: July 10, 2014
    Applicant: INTEL CORPORATION
    Inventors: Wajdi K. Feghali, Vinodh Gopal, James D. Guilford, Erdinc Ozturk, Gilbert M. Wolrich, Kirk S. Yap, Sean M. Gulley, Martin G. Dixon
  • Publication number: 20140189289
    Abstract: Vector instructions for performing SNOW 3G wireless security operations are received and executed by the execution circuitry of a processor. The execution circuitry receives a first operand of the first instruction specifying a first vector register that stores a current state of a finite state machine (FSM). The execution circuitry also receives a second operand of the first instruction specifying a second vector register that stores data elements of a liner feedback shift register (LFSR) that are needed for updating the FSM. The execution circuitry executes the first instruction to produce a updated state of the FSM and an output of the FSM in a destination operand of the first instruction.
    Type: Application
    Filed: December 28, 2012
    Publication date: July 3, 2014
    Inventors: Gilbert M. Wolrich, Vinodh Gopal, Erdinc Ozturk, Kirk S. Yap, Wajdi K. Feghali
  • Publication number: 20140177823
    Abstract: Methods and apparatus are disclosed to reduce processor demands during encryption. A disclosed example method includes detecting a request for the processor to execute an encryption cipher determining whether the encryption cipher is associated with a byte reflection operation, preventing the byte reflection operation when a buffer associated with the encryption cipher will not cause a carryover condition, and incrementing the buffer via a shift operation before executing the encryption cipher.
    Type: Application
    Filed: December 26, 2012
    Publication date: June 26, 2014
    Inventors: Vinodh Gopal, Erdinc Ozturk, James D. Guilford
  • Publication number: 20140164467
    Abstract: An apparatus is described that includes a semiconductor chip having an instruction execution pipeline having one or more execution units with respective logic circuitry to: a) execute a first instruction that multiplies a first input operand and a second input operand and presents a lower portion of the result, where, the first and second input operands are respective elements of first and second input vectors; b) execute a second instruction that multiplies a first input operand and a second input operand and presents an upper portion of the result, where, the first and second input operands are respective elements of first and second input vectors; and, c) execute an add instruction where a carry term of the add instruction's adding is recorded in a mask register.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 12, 2014
    Inventors: Gilbert M. Wolrich, Kirk S. Yap, James D. Guilford, Erdinc Ozturk, Vinodh Gopal, Wajdi K. Feghali, Sean M. Gulley, Martin G. Dixon
  • Publication number: 20140156790
    Abstract: Methods and apparatus for processing bitstreams and byte streams. According to one aspect, bitstream data is compressed using coalesced string match tokens with delayed matching. A matcher is employed to perform search string match operations using a shortened maximum string length search criteria, resulting in generation of a token stream having <len, distance> data and literal data. A distance match operation is performed on sequentially adjacent tokens to determine if they contain the same distance data. If they do, the len values of the tokens are added through use of a coalesce buffer. Upon detection of a distance non-match, a final coalesced length of a matching string is calculated and output along with the prior matching distance as a coalesced token.
    Type: Application
    Filed: December 23, 2011
    Publication date: June 5, 2014
    Inventors: Vinodh Gopal, Jim D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghail, Deniz Karakoyunlu, Erdinc Ozturk, Martin Dixon, Kahraman Akdemir
  • Patent number: 8738893
    Abstract: A method in one aspect may include receiving an add instruction. The add instruction may indicate a first source operand, a second source operand, and a third source operand. A sum of the first, second, and third source operands may be stored as a result of the add instruction. The sum may be stored partly in a destination operand indicated by the add instruction and partly a plurality of flags. Other methods are also disclosed, as are apparatus, systems, and instructions on machine-readable medium.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 27, 2014
    Assignee: Intel Corporation
    Inventors: Vindoh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghali, Erdinc Ozturk, Martin G. Dixon, Sean P. Mirkes, Bret L. Toll, Maxim Loktyukin, Mark C. Davis, Alexandre J. Farcy
  • Publication number: 20140122839
    Abstract: An apparatus is described that includes an execution unit within an instruction pipeline. The execution unit has multiple stages of a circuit that includes a) and b) as follows. a) a first logic circuitry section having multiple mix logic sections each having: i) a first input to receive a first quad word and a second input to receive a second quad word; ii) an adder having a pair of inputs that are respectively coupled to the first and second inputs; iii) a rotator having a respective input coupled to the second input; iv) an XOR gate having a first input coupled to an output of the adder and a second input coupled to an output of the rotator. b) permute logic circuitry having inputs coupled to the respective adder and XOR gate outputs of the multiple mix logic sections.
    Type: Application
    Filed: December 22, 2011
    Publication date: May 1, 2014
    Inventors: Gilbert M. Wolrich, Kirk S. Yap, James D. Guilford, Erdinc Ozturk, Vinodh Gopal, Wajdi K. Feghali, Sean M. Gulley, Martin G. Dixon
  • Publication number: 20140082328
    Abstract: According to one embodiment, a processor includes an instruction decoder to receive an instruction to process a multiply-accumulate operation, the instruction having a first operand, a second operand, a third operand, and a fourth operand. The first operand is to specify a first storage location to store an accumulated value; the second operand is to specify a second storage location to store a first value and a second value; and the third operand is to specify a third storage location to store a third value. The processor further includes an execution unit coupled to the instruction decoder to perform the multiply-accumulate operation to multiply the first value with the second value to generate a multiply result and to accumulate the multiply result and at least a portion of a third value to an accumulated value based on the fourth operand.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 20, 2014
    Applicant: INTEL CORPORATION
    Inventors: Vinodh Gopal, Erdinc Ozturk, James D. Guilford, Gilbert M. Wolrich
  • Publication number: 20140053000
    Abstract: A method is described.
    Type: Application
    Filed: December 22, 2011
    Publication date: February 20, 2014
    Applicant: INTEL CORPORATION
    Inventors: Kirk S. Yap, Gilbert M. Wolrich, Vinodh Gopal, James D. Guilford, Erdinc Ozturk, Sean M. Gulley, Wajdi K. Feghali, Martin G. Dixon
  • Publication number: 20140019725
    Abstract: Methods, systems, and apparatuses are disclosed for implementing fast large-integer arithmetic within an integrated circuit, such as on IA (Intel Architecture) processors, in which such means include receiving a 512-bit value for squaring, the 512-bit value having eight sub-elements each of 64-bits and performing a 512-bit squaring algorithm by: (i) multiplying every one of the eight sub-elements by itself to yield a square of each of the eight sub-elements, the eight squared sub-elements collectively identified as T1, (ii) multiplying every one of the eight sub-elements by the other remaining seven of the eight sub-elements to yield an asymmetric intermediate result having seven diagonals therein, wherein each of the seven diagonals are of a different length, (iii) reorganizing the asymmetric intermediate result having the seven diagonals therein into a symmetric intermediate result having four diagonals each of 7×1 sub-elements of the 64-bits in length arranged across a plurality of columns, (iv) adding all
    Type: Application
    Filed: December 6, 2012
    Publication date: January 16, 2014
    Inventors: ERDINC OZTURK, VINODH GOPAL, JAMES GUILFORD
  • Publication number: 20140016774
    Abstract: A method is described. The method includes executing an instruction to perform one or more Galois Field (GF) multiply by 2 operations on a state matrix and executing an instruction to combine results of the one or more GF multiply by 2 operations with exclusive or (XOR) functions to generate a result matrix.
    Type: Application
    Filed: December 22, 2011
    Publication date: January 16, 2014
    Inventors: Gilbert M. Wolrich, Kirk S. Yap, Vinodh Gopal, James D. Guilford, Erdinc Ozturk, Sean M. Gulley, Wajdi K. Feghali, Martin G. Dixon
  • Publication number: 20140016773
    Abstract: A method of an aspect includes receiving an instruction indicating a first source having at least one set of four state matrix data elements, which represent a complete set of four inputs to a G function of a cryptographic hashing algorithm. The algorithm uses a sixteen data element state matrix, and alternates between updating data elements in columns and diagonals. The instruction also indicates a second source having data elements that represent message and constant data. In response to the instruction, a result is stored in a destination indicated by the instruction. The result includes updated state matrix data elements including at least one set of four updated state matrix data elements. Each of the four updated state matrix data elements represents a corresponding one of the four state matrix data elements of the first source, which has been updated by the G function.
    Type: Application
    Filed: December 22, 2011
    Publication date: January 16, 2014
    Inventors: Gilbert M. Wolrich, Kirk S. Yap, James D. Guilford, Vinodh Gopal, Erdinc Ozturk, Sean M. Gulley, Wajdi K. Feghali, Martin G. Dixon
  • Publication number: 20140013086
    Abstract: A number of addition instructions are provided that have no data dependency between each other. A first addition instruction stores its carry output in a first flag of a flags register without modifying a second flag in the flags register. A second addition instruction stores its carry output in the second flag of the flags register without modifying the first flag in the flags register.
    Type: Application
    Filed: December 22, 2011
    Publication date: January 9, 2014
    Inventors: Vinodh Gopal, James D. Guilford, Gilbert M. Wolrich, Wajdi K. Feghali, Erdinc Ozturk, Martin G. Dixon, Sean P. Mirkes, Matthew C. Merten, Tong Li, Bret T. Toll, I
  • Publication number: 20140006753
    Abstract: A method is described. The method includes iteratively performing for each position in a result matrix stored in a third register, multiplying a value at a matrix position stored in a first register with a value at a matrix position stored in a second register to obtain a first multiplicative value, where the positions in the first register and the second register are determined by the position in the result matrix and performing an exclusive or (XOR) operation with the first multiplicative value and a value stored at a result matrix position stored in the third register to obtain a result value.
    Type: Application
    Filed: December 22, 2011
    Publication date: January 2, 2014
    Inventors: Vinodh Gopal, Gilbert M. Wolrich, Kirk S. Yap, James D. Guilford, Erdinc Ozturk, Sean M. Gulley, Wajdi K. Feghali, Martin G. Dixon
  • Publication number: 20140006536
    Abstract: An embodiment may include circuitry that may be capable of performing compression-related operations that may include: (a) indicating, at least in part, in a data structure at least one position of at least one subset of characters that are to be encoded as a symbol, (b) comparing, at least in part, at least one pair of multi-byte data words that are of identical predetermined fixed size, (c) maintaining, at least in part, an array of pointers to potentially matching strings that are to be compared with at least one currently examined string, and/or (d) allocating, at least in part, a first buffer portion to store at least one portion of uncompressed data from an application buffer that is to be input for compression to produce a compressed data stream. Other embodiments are described and claimed.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: INTEL CORPORATION
    Inventors: JAMES D. GUILFORD, VINODH GOPAL, GILBERT M. WOLRICH, ERDINC OZTURK, WAJDI K. FEGHALI
  • Publication number: 20130326201
    Abstract: An apparatus and method are described for processing bit streams using bit-oriented instructions. For example, a method according to one embodiment includes the operations of: executing an instruction to get bits for an operation, the instruction identifying a start bit address and a number of bits to be retrieved; retrieving the bits identified by the start bit address and number of bits from a bit-oriented register or cache; and performing a sequence of specified bit operations on the retrieved bits to generate results.
    Type: Application
    Filed: December 22, 2011
    Publication date: December 5, 2013
    Inventors: Vinodh Gopal, James d. Guilford, Gilbert M. Wolrich, Erdinc Ozturk, Wajdi K. Feghali, Kirk S. Yap, Sean M. Gulley, Martin G. Dixon, Robert S. Chappell
  • Publication number: 20130311756
    Abstract: A method of one aspect may include receiving a rotate instruction. The rotate instruction may indicate a source operand and a rotate amount. A result may be stored in a destination operand indicated by the rotate instruction. The result may have the source operand rotated by the rotate amount. Execution of the rotate instruction may complete without reading a carry flag.
    Type: Application
    Filed: July 22, 2013
    Publication date: November 21, 2013
    Inventors: VINODH GOPAL, JAMES D. GULILFORD, GILBERT M. WOLRICH, WAIDI K. FEGHALI, ERDINC OZTURK, MARTIN G. DIXON, SEAN P. MIRKES, BRET L. TOLL, MAXIM LOKTYUKHIN, MARK C. DAVIS, ALEXANDRE J. FARCY