Patents by Inventor Eric L. Dias

Eric L. Dias has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170298036
    Abstract: Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
    Type: Application
    Filed: January 26, 2017
    Publication date: October 19, 2017
    Inventors: Valery SOKOLOVSKII, Mayya LAVRENKO, Alfred HAGEMEYER, Eric L. DIAS, James A. W. SHOEMAKER, Vincent J. MURPHY
  • Patent number: 9783473
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceeding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: October 10, 2017
    Assignee: Rennovia Inc.
    Inventors: Eric L. Dias, James A. W. Shoemaker, Thomas R. Boussie, Vincent J. Murphy
  • Patent number: 9776945
    Abstract: Processes for separating a di-carboxylic acid or salt thereof from a mixture containing the di-carboxylic acid or salt thereof and one or more other components are provided. Also separation media useful for these separation processes is provided. In particular, processes for preparing an aldaric acid are described, such as glucaric acid from glucose, which includes separating the aldaric acid from the reaction product. Also, various glucaric acid products are described.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: October 3, 2017
    Assignee: Rennovia Inc.
    Inventors: Gary M. Diamond, Eric L. Dias, Raymond Archer, Vincent J. Murphy, Thomas R. Boussie
  • Patent number: 9770705
    Abstract: Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: September 26, 2017
    Assignee: Rennovia Inc.
    Inventors: Vincent J. Murphy, James Shoemaker, Guang Zhu, Raymond Archer, George Frederick Salem, Eric L. Dias
  • Publication number: 20170226038
    Abstract: Processes are disclosed for the conversion of 1,6-hexanediol to adipic acid employing a chemocatalytic reaction in which 1,6-hexanediol is reacted with oxygen in the presence of particular heterogeneous catalysts including at least one of platinum or gold. The metals are preferably provided on a support selected from the group of titania, stabilized titania, zirconia, stabilized zirconia, silica or mixtures thereof, most preferably zirconia stabilized with tungsten. The reaction with oxygen is carried out at a temperature from about 100° C. to about 300° C. and at a partial pressure of oxygen from about 50 psig to about 2000 psig.
    Type: Application
    Filed: October 17, 2016
    Publication date: August 10, 2017
    Inventors: Eric L. DIAS, Vincent J. MURPHY, James A.W. SHOEMAKER
  • Publication number: 20170197930
    Abstract: The present disclosure provides processes for the production of 2-5-furandicarboxylic acid (FDCA) and intermediates thereof by the chemocatalytic conversion of a furanic oxidation substrate. The present disclosure further provides processes for preparing derivatives of FDCA and FDCA-based polymers. In addition, the present disclosure provides crystalline preparations of FDCA, as well as processes for making the same.
    Type: Application
    Filed: January 12, 2017
    Publication date: July 13, 2017
    Inventors: Valery Sokolovskii, Vincent J. Murphy, Thomas R. Boussie, Gary M. Diamond, Eric L. Dias, Guang Zhu, James M. Longmire, Stanley Herrmann, Staffan Torssell, Mayya Lavrenko
  • Patent number: 9682368
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 20, 2017
    Assignee: Rennovia Inc.
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A. W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Publication number: 20170165641
    Abstract: Shaped porous carbon products and processes for preparing these products are provided. The shaped porous carbon products can be used, for example, as catalyst supports and adsorbents. Catalyst compositions including these shaped porous carbon products, processes of preparing the catalyst compositions, and various processes of using the shaped porous carbon products and catalyst compositions are also provided.
    Type: Application
    Filed: February 24, 2017
    Publication date: June 15, 2017
    Applicant: Rennovia Inc.
    Inventors: Eric L. Dias, Alfred Hagemeyer, Hong X. Jiang, James Longmire, James A.W. Shoemaker, Valery Sokolovskii, Guang Zhu, Vincent J. Murphy, Gary M. Diamond
  • Publication number: 20170158593
    Abstract: The present invention generally relates to processes for the chemocatalytic conversion of a glucose source to an adipic acid product. The present invention includes processes for the conversion of glucose to an adipic acid product via glucaric acid or derivatives thereof. The present invention also includes processes comprising catalytic oxidation of glucose to glucaric acid or derivative thereof and processes comprising the catalytic hydrodeoxygenation of glucaric acid or derivatives thereof to an adipic acid product. The present invention also includes products produced from adipic acid product and processes for the production thereof from such adipic acid product.
    Type: Application
    Filed: August 9, 2016
    Publication date: June 8, 2017
    Applicant: Rennovia Inc.
    Inventors: Thomas R. Boussie, Eric L. Dias, Zachary M. Fresco, Vincent J. Murphy, James Shoemaker, Raymond Archer, Hong Jiang
  • Publication number: 20170158656
    Abstract: The present invention relates generally to processes for converting fructose-containing feedstocks to a product comprising 5-(hydroxymethyl)furfural (HMF) and water in the presence of water, solvent and an acid catalyst. In some embodiments, the conversion of fructose to HMF is controlled at a partial conversion endpoint characterized by a yield of HMF from fructose that does not exceed about 80 mol %. In these and other embodiments, the processes provide separation techniques for separating and recovering the product, unconverted fructose, solvent and acid catalyst to enable the effective recovery and reutilization of reaction components.
    Type: Application
    Filed: February 21, 2017
    Publication date: June 8, 2017
    Applicant: Rennovia Inc.
    Inventors: Thomas R. Boussie, Eric L. Dias, Vincent J. Murphy, James A. W. Shoemaker
  • Publication number: 20170144962
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Application
    Filed: June 28, 2016
    Publication date: May 25, 2017
    Inventors: Eric L. Dias, James A.W. SHOEMAKER, Thomas R. BOUSSIE, Vincent J. MURPHY
  • Publication number: 20170120223
    Abstract: The present invention provides a porous metal-containing carbon-based material that is stable at high temperatures under aqueous conditions. The porous metal-containing carbon-based materials are particularly useful in catalytic applications. Also provided, are methods for making and using porous shaped metal-carbon products prepared from these materials.
    Type: Application
    Filed: April 18, 2016
    Publication date: May 4, 2017
    Applicant: Rennovia Inc.
    Inventors: Valery Sokolovskii, Alfred Hagemeyer, James A.W. Shoemaker, Elif Ispir Gürbüz, Guang Zhu, Eric L. Dias
  • Patent number: 9611241
    Abstract: The present invention relates generally to processes for converting fructose-containing feedstocks to a product comprising 5-(hydroxymethyl)furfural (HMF) and water in the presence of water, solvent and an acid catalyst. In some embodiments, the conversion of fructose to HMF is controlled at a partial conversion endpoint characterized by a yield of HMF from fructose that does not exceed about 80 mol %. In these and other embodiments, the processes provide separation techniques for separating and recovering the product, unconverted fructose, solvent and acid catalyst to enable the effective recovery and reutilization of reaction components.
    Type: Grant
    Filed: January 27, 2015
    Date of Patent: April 4, 2017
    Assignee: Rennovia Inc.
    Inventors: Thomas R. Boussie, Eric L. Dias, Vincent J. Murphy, James A. W. Shoemaker
  • Patent number: 9586920
    Abstract: Industrial scale conversions of 5-hydroxymethylfurfural to commodity chemicals such as 1,2,6-hexanetriol and 1,6-hexanediol by chemocatalytic conversions using hydrogen and a heterogeneous reduction catalyst are provided. The reactions are suitable for use in continuous flow reactors. Methods of carrying out the conversions are provided, as are product and catalyst compositions.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: March 7, 2017
    Assignee: RENNOVIA INC.
    Inventors: Valery Sokolovskii, Mayya Lavrenko, Alfred Hagemeyer, Eric L. Dias, James A. W. Shoemaker, Vincent J. Murphy
  • Publication number: 20170050906
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Application
    Filed: June 28, 2016
    Publication date: February 23, 2017
    Inventors: Eric L. Dias, James A.W. Shoemaker, Thomas R. Boussie, Vincent J. Murphy
  • Publication number: 20170028386
    Abstract: Disclosed are catalysts comprised of platinum and gold. The catalysts are generally useful for the selective oxidation of compositions comprised of a primary alcohol group and at least one secondary alcohol group wherein at least the primary alcohol group is converted to a carboxyl group. More particularly, the catalysts are supported catalysts including particles comprising gold and particles comprising platinum, wherein the molar ratio of platinum to gold is in the range of about 100:1 to about 1:4, the platinum is essentially present as Pt(0) and the platinum-containing particles are of a size in the range of about 2 to about 50 nm. Also disclosed are methods for the oxidative chemocatalytic conversion of carbohydrates to carboxylic acids or derivatives thereof. Additionally, methods are disclosed for the selective oxidation of glucose to glucaric acid or derivatives thereof using catalysts comprising platinum and gold. Further, methods are disclosed for the production of such catalysts.
    Type: Application
    Filed: October 12, 2016
    Publication date: February 2, 2017
    Applicant: Rennovia Inc.
    Inventors: Vincent J. Murphy, James Shoemaker, Guang Zhu, Raymond Archer, George Frederick Salem, Eric L. Dias
  • Publication number: 20170015642
    Abstract: The present invention relates generally to processes for converting fructose-containing feedstocks to a product comprising 5-(hydroxymethyl)furfural (HMF) and water in the presence of water, solvent and an acid catalyst. In some embodiments, the conversion of fructose to HMF is controlled at a partial conversion endpoint characterized by a yield of HMF from fructose that does not exceed about 80 mol %. In these and other embodiments, the processes provide separation techniques for separating and recovering the product, unconverted fructose, solvent and acid catalyst to enable the effective recovery and reutilization of reaction components.
    Type: Application
    Filed: April 18, 2016
    Publication date: January 19, 2017
    Applicant: RENNOVIA, INC.
    Inventors: Valery Sokolovskii, Eric L. Dias, Hong X. Jiang, James M. Longmire, Vincent J. Murphy, Christopher Paul Dunckley, Gary M. Diamond, Thomas R. Boussie, James A.W. Shoemaker, Liza Lopez Soto
  • Patent number: 9518005
    Abstract: Processes are disclosed for the conversion of a carbohydrate source to hexamethylenediamine (HMDA) and to intermediates useful for the production of hexamethylenediamine and other industrial chemicals. HMDA is produced by direct reduction of a furfural substrate to 1,6-hexanediol in the presence of hydrogen and a heterogeneous reduction catalyst comprising Pt or by indirect reduction of a furfural substrate to 1,6-hexanediol wherein 1,2,6-hexanetriol is produced by reduction of the furfural substrate in the presence of hydrogen and a catalyst comprising Pt and 1,2,6-hexanediol is then converted by hydrogenation in the presence of a catalyst comprising Pt to 1,6 hexanediol, each process then proceding to the production of HMDA by known routes, such as amination of the 1,6 hexanediol. Catalysts useful for the direct and indirect production of 1,6-hexanediol are also disclosed.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 13, 2016
    Assignee: Rennovia Inc.
    Inventors: Eric L. Dias, James A. W. Shoemaker, Thomas R. Boussie, Vincent J. Murphy
  • Patent number: 9487465
    Abstract: The present disclosure relates to processes for the separation of at least one di-carboxylic acid compound and/or at least one mono-carboxylic acid compound from a mixture. The separation processes involve contacting the mixture with an ion exchange medium to cause at least one of the mono- and/or di-carboxylic acid compounds to be retained by the medium, eluting at least one of the mono-carboxylic acid compound or the di-carboxylic acid compound using an eluent to form an eluate, wherein the eluate is enriched in at least one of the mono-carboxylic acid compound or di-carboxylic acid relative to the concentration of such eluted acid in the mixture having contacted the medium and wherein the eluent comprises an organic acid. The process has particular utility in the production of di-carboxylic acid compounds from glucose.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: November 8, 2016
    Assignee: Rennovia Inc.
    Inventors: Raymond Archer, Gary M. Diamond, Eric L. Dias, Vincent J. Murphy, Miroslav Petro, John D. Super
  • Patent number: 9468908
    Abstract: Disclosed are catalysts comprised of platinum and rhodium on a support selected from the group of zirconia, stabilized (doped) zirconia, zirconia-metal oxide composites, and mixtures thereof, wherein the outer surfaces of the support are selected from the group of zirconia, stabilized zirconia, and mixtures thereof. More particularly, the supported catalysts comprise platinum and rhodium, wherein the molar ratio of platinum to rhodium is in the range of about 3:1 to about 1:2. The average pore diameter of the catalyst supports is in the range of about 5 nm to about 70 nm and the surface area is in the range of about 15 m2/g to about 200 m2/g. Also disclosed are methods for the hydrodeoxygenation of carboxylic acids, mono- and/or di-lactones thereof having at least one hydroxyl group on the backbone thereof to corresponding acids where the backbone hydroxyl group has been reduced in the presence of the catalyst.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: October 18, 2016
    Assignee: Renovia Inc.
    Inventors: George Fredrick Salem, Guang Zhu, Alfred Gerhard Hagemeyer, Eric L. Dias