Patents by Inventor Eric Morgan Dowling

Eric Morgan Dowling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9564927
    Abstract: The present invention provides a design framework that is used to develop new types of constrained turbo block convolutional (CTBC) codes that have higher performance than was previously attainable. The design framework is applied to design both random and deterministic constrained interleavers. Vectorizable deterministic constrained interleavers are developed and used to design parallel architectures for real time SISO decoding of CTBC codes. A new signal mapping technique called constrained interleaved coded modulation (CICM) is also developed. CICM is then used to develop rate matching, spatial modulation, and MIMO modulation subsystems to be used with CTBC codes and other types of codes. By way of example, embodiments are primarily provided for improved 5G LTE and optical transport network (OTN) communication systems.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: February 7, 2017
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Publication number: 20160352362
    Abstract: The present invention provides a design framework that is used to develop new types of constrained turbo block convolutional (CTBC) codes that have higher performance than was previously attainable. The design framework is applied to design both random and deterministic constrained interleavers. Vectorizable deterministic constrained interleavers are developed and used to design parallel architectures for real time SISO decoding of CTBC codes. A new signal mapping technique called constrained interleaved coded modulation (CICM) is also developed. CICM is then used to develop rate matching, spatial modulation, and MIMO modulation subsystems to be used with CTBC codes and other types of codes. By way of example, embodiments are primarily provided for improved 5G LTE and optical transport network (OTN) communication systems.
    Type: Application
    Filed: August 25, 2015
    Publication date: December 1, 2016
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20160352419
    Abstract: The present invention provides a design framework that is used to develop new types of constrained turbo block convolutional (CTBC) codes that have higher performance than was previously attainable. The design framework is applied to design both random and deterministic constrained interleavers. Vectorizable deterministic constrained interleavers are developed and used to design parallel architectures for real time SISO decoding of CTBC codes. A new signal mapping technique called constrained interleaved coded modulation (CICM) is also developed. CICM is then used to develop rate matching, spatial modulation, and MIMO modulation subsystems to be used with CTBC codes and other types of codes. By way of example, embodiments are primarily provided for improved 5G LTE and optical transport network (OTN) communication systems. Detailed descriptions of embodiments are also provided that combine aspects of MIMO and spatial modulation systems to improve bandwidth efficiency.
    Type: Application
    Filed: August 25, 2015
    Publication date: December 1, 2016
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20160352361
    Abstract: The present invention provides a design framework that is used to develop new types of constrained turbo block convolutional (CTBC) codes that have higher performance than was previously attainable. The design framework is applied to design both random and deterministic constrained interleavers. Vectorizable deterministic constrained interleavers are developed and used to design parallel architectures for real time SISO decoding of CTBC codes. A new signal mapping technique called constrained interleaved coded modulation (CICM) is also developed. CICM is then used to develop rate matching, spatial modulation, and MIMO modulation subsystems to be used with CTBC codes and other types of codes. By way of example, embodiments are primarily provided for improved 5G LTE and optical transport network (OTN) communication systems.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 1, 2016
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20160253513
    Abstract: A smart card is used with a network based system to providing portable telecommunication and computing services. In an exemplary embodiment the smart card holds a user authentication code and user telephony account information. The smart card transfers the user authentication code and the account information to one of a plurality of geographically dispersed card readers which are each connected to a local telephony device. When the smart card is plugged into a first card reader, telephone calls directed to the smart card user's follow-me telephone number are received at a first local telephony device. When the smart card is plugged into a second smart card reader, telephone calls directed to the follow-me telephone number are received at a second telephony local device. Hence the user is enabled to receive and place calls using any of the geographically dispersed telephony devices as though they were his/her own personal landline or cellular telephone supplied by his/her telephony services provider.
    Type: Application
    Filed: January 22, 2016
    Publication date: September 1, 2016
    Inventors: Eric Morgan Dowling, Robert A. Westerlund
  • Patent number: 9362955
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages. These performance advantages allow a noise margin target to be achieved using simpler component codes and a much shorter interleaver than was needed when using prior art codes such as Turbo codes. Decoders are also provided. Both encoding and decoding complexity can be lowered, and interleavers can be made much shorter, thereby shortening the block lengths needed in receiver elements such as equalizers and other decision-directed loops.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: June 7, 2016
    Assignee: Trellis Phase Communications, LP
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Publication number: 20160119001
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 28, 2016
    Inventors: JOHN P. FONSEKA, ERIC MORGAN DOWLING
  • Patent number: 9247071
    Abstract: A smart card is used with a network based system to providing portable telecommunication and computing services. In an exemplary embodiment the smart card holds a user authentication code and user telephony account information. The smart card transfers the user authentication code and the account information to one of a plurality of geographically dispersed card readers which are each connected to a local telephony device. When the smart card is plugged into a first card reader, telephone calls directed to the smart card user's follow-me telephone number are received at a first local telephony device. When the smart card is plugged into a second smart card reader, telephone calls directed to the follow-me telephone number are received at a second telephony local device. Hence the user is enabled to receive and place calls using any of the geographically dispersed telephony devices as though they were his/her own personal landline or cellular telephone supplied by his/her telephony services provider.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: January 26, 2016
    Inventors: Eric Morgan Dowling, Robert A Westerlund
  • Patent number: 9240808
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: January 19, 2016
    Assignee: Trellis Phase Communications, LP
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Patent number: 9118350
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: August 25, 2015
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Patent number: 9116826
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages. These performance advantages allow a noise margin target to be achieved using simpler component codes and a much shorter interleaver than was needed when using prior art codes such as Turbo codes. Decoders are also provided. Both encoding and decoding complexity can be lowered, and interleavers can be made much shorter, thereby shortening the block lengths needed in receiver elements such as equalizers and other decision-directed loops.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: August 25, 2015
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Publication number: 20150236723
    Abstract: A constrained turbo block convolutional code (CTBC) involves a serial concatenation of a outer block code B with an inner recursive convolutional code, joined together by a constrained interleaver type 2 (CI-2). The CI-2 interleaver is designed off line, and prior to VLSI design time. The present invention provides massively parallel systems, methods, and apparatus for use in CTBC encoding and decoding. For example, a massively parallel CTBC decoder is be implemented using N processors, each with local private memory, and each with local access to a one or more respective memory locations (e.g., registers) in one or more respective multiported memory banks that each hold extrinsic or related information used in CTBC code iterative SISO decoding. Both the arithmetic decoding operations and the CI-2 interleaving and deinterleaving functions are performed in parallel using the systems, methods, and apparatus of the present invention.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Inventor: Eric Morgan Dowling
  • Patent number: 9112534
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: August 18, 2015
    Inventors: John P Fonseka, Eric Morgan Dowling
  • Publication number: 20150180509
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Application
    Filed: August 2, 2013
    Publication date: June 25, 2015
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20150143195
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages. These performance advantages allow a noise margin target to be achieved using simpler component codes and a much shorter interleaver than was needed when using prior art codes such as Turbo codes. Decoders are also provided. Both encoding and decoding complexity can be lowered, and interleavers can be made much shorter, thereby shortening the block lengths needed in receiver elements such as equalizers and other decision-directed loops.
    Type: Application
    Filed: August 2, 2013
    Publication date: May 21, 2015
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20150103383
    Abstract: A network scanner, communication protocols, and client and server programs and are provided which provide an improved way to transmit legally binding documents, obviating the need for outmoded, legacy fax transmissions. Using the network scanner, a document may be scanned and transferred directly into any shared folder inbox residing on any computer attached to the Internet. Enhanced server systems and network communications and messaging protocols are provided that are more practical to use than email for sending documents such as executed legal documents or other documents requiring robust integrity and authenticatability. Similarly, the inventive network scanner, server systems and communication protocols provide improved ways to perform large file transfers and to manage bandwidth to minimize problems associated with uploading/downloading large files as attachments to/from email servers and for enabling user control over VoIP quality during file transmission sessions.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 16, 2015
    Inventors: Eric Morgan Dowling, Robert A. Westerlund
  • Publication number: 20150039965
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20150039966
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages. These performance advantages allow a noise margin target to be achieved using simpler component codes and a much shorter interleaver than was needed when using prior art codes such as Turbo codes. Decoders are also provided. Both encoding and decoding complexity can be lowered, and interleavers can be made much shorter, thereby shortening the block lengths needed in receiver elements such as equalizers and other decision-directed loops.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20150039962
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: John P. Fonseka, Eric Morgan Dowling
  • Publication number: 20150039964
    Abstract: Serially-concatenated codes are formed in accordance with the present invention using a constrained interleaver. The constrained interleaver cause the minimum distance of the serial concatenated code to increase above the minimum distance of the inner code alone by adding a constraint that forces some or all of the distance of the outer code onto the serially-concatenated code. This allows the serially-concatenated code to be jointly optimized in terms of both minimum distance and error coefficient to provide significant performance advantages.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: John P. Fonseka, Eric Morgan Dowling