Patents by Inventor Ernesto E. Marinero

Ernesto E. Marinero has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8189302
    Abstract: A graphene magnetic field sensor has a ferromagnetic biasing layer located beneath and in close proximity to the graphene sense layer. The sensor includes a suitable substrate, the ferromagnetic biasing layer, the graphene sense layer, and an electrically insulating underlayer between the ferromagnetic biasing layer and the graphene sense layer. The underlayer may be a hexagonal boron-nitride (h-BN) layer, and the sensor may include a seed layer to facilitate the growth of the h-BN underlayer. The ferromagnetic biasing layer has perpendicular magnetic anisotropy with its magnetic moment oriented substantially perpendicular to the plane of the layer. The graphene magnetic field sensor based on the extraordinary magnetoresistance (EMR) effect may function as the magnetoresistive read head in a magnetic recording disk drive.
    Type: Grant
    Filed: September 11, 2010
    Date of Patent: May 29, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Bruce Alvin Gurney, Ernesto E. Marinero, Simone Pisana
  • Patent number: 8166633
    Abstract: A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: May 1, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Publication number: 20120092790
    Abstract: A patterned perpendicular magnetic recording disk with discrete data islands of recording layer (RL) material includes a substrate, a patterned exchange bridge layer of magnetic material between the substrate and the islands, and an optional exchange-coupling control layer (CCL) between the exchange bridge layer and the islands. The exchange bridge layer has patterned pedestals below the islands. The exchange bridge layer controls exchange interactions between the RLs in adjacent islands to compensate the dipolar fields between islands, and the pedestals concentrate the flux from the write head. The disk may include a soft underlayer (SUL) of soft magnetically permeable material on the substrate and a nonmagnetic exchange break layer (EBL) on the SUL between the SUL and the exchange bridge layer. In a thermally-assisted recording (TAR) disk a heat sink layer may be located below the exchange bridge layer and the SUL may be optional.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Olav Hellwig, Dan Saylor Kercher, Ernesto E. Marinero, Manfred Ernst Schabes, Dieter K. Weller, Gabriel Zeltzer
  • Patent number: 8159791
    Abstract: A Lorentz Magnetoresistive sensor having an ultrathin trapping layer disposed between a quantum well structure and a surface of the sensor. The trapping layer prevents charge carriers from the surface of the sensor from affecting the quantum well structure. This allows the quantum well structure to be formed much closer to the surface of the sensor, and therefore, much closer to the magnetic field source, greatly improving sensor performance. A Lorentz Magnetoresistive sensor having a top gate electrode to hinder surface charge carriers diffusing into the quantum well, said top gate electrode being either a highly conductive ultrathin patterned metal layer or a patterned monoatomic layer of graphene.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: April 17, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Bruce Alvin Gurney, Ernesto E. Marinero
  • Publication number: 20120063033
    Abstract: A graphene magnetic field sensor has a ferromagnetic biasing layer located beneath and in close proximity to the graphene sense layer. The sensor includes a suitable substrate, the ferromagnetic biasing layer, the graphene sense layer, and an electrically insulating underlayer between the ferromagnetic biasing layer and the graphene sense layer. The underlayer may be a hexagonal boron-nitride (h-BN) layer, and the sensor may include a seed layer to facilitate the growth of the h-BN underlayer. The ferromagnetic biasing layer has perpendicular magnetic anisotropy with its magnetic moment oriented substantially perpendicular to the plane of the layer. The graphene magnetic field sensor based on the extraordinary magnetoresistance (EMR) effect may function as the magnetoresistive read head in a magnetic recording disk drive.
    Type: Application
    Filed: September 11, 2010
    Publication date: March 15, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Bruce Alvin Gurney, Ernesto E. Marinero, Simone Pisana
  • Patent number: 8125742
    Abstract: A Lorentz Magnetoresistive sensor having an extremely small lead width and lead spacing is disclosed. The sensor can be constructed by a novel fabrication method that allows the leads to be deposited in such a manner that lead width and spacing between the leads is determined by the as deposited thicknesses of the lead layers and electrically insulating spacer layers between the leads rather than by photolithography. Because the lead thicknesses and lead spacings are not defined photolithograhically, the lead thickness and lead spacing are not limited by photolithographic resolution limits.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: February 28, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Bruce Alvin Gurney, Ernesto E. Marinero, Andrew Stuart Troup, David Arfon Williams, Joerg Wunderlich
  • Patent number: 8119264
    Abstract: A perpendicular magnetic recording disk has a granular cobalt alloy recording layer (RL) containing an additive oxide or oxides, an intermediate layer (IL) as an exchange-break layer on the “soft” magnetic underlayer (SUL), and an ultrathin nucleation film (NF) between the IL and the RL. In the method of making the disk, the IL is deposited at a relatively low sputtering pressure, to thereby reduce the roughness of the RL and overcoat (OC), while the NF and RL are deposited at substantially higher sputtering pressures. The resulting disk has good recording properties and improved corrosion resistance over a comparable disk made with an IL deposited at high sputtering pressure and without the NF. The NF may be a discontinuous film with an average thickness of less than about 1 nm.
    Type: Grant
    Filed: March 24, 2010
    Date of Patent: February 21, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Ernesto E. Marinero
  • Patent number: 8107197
    Abstract: A slider for magnetic data recording having a semiconductor based magnetoresistive sensor such as a Lorentz magnetoresistive sensor formed on an air bearing surface of the slider body. The slider is constructed of Si, which advantageously provides a needed physical robustness as well being compatible with the construction of a semiconductor based sensor thereon. A series of transition layers are provided between the surface of the Si slider body and the semiconductor based magnetoresistive sensor in order to provide a necessary grain structure for proper functioning of the sensor. The series of transition layers can be constructed of layers of SiGe each having a unique concentration of Ge.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: January 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert E. Fontana, Jr., Bruce Alvin Gurney, Ernesto E. Marinero
  • Patent number: 8048546
    Abstract: A continuous-media perpendicular magnetic recording disk with an oxide-containing granular Co alloy recording layer (RL) having minimal grain size dispersion has an ordered nucleation layer (ONL) formed below RL. The ONL has ordered nucleation sites arranged in a generally repetitive pattern. The nucleation sites are generally surrounded by non-nucleation regions of a different material than the nucleation sites. The Co-alloy grains of the subsequently deposited RL grow on the nucleation sites and the oxide of the RL become generally segregated on the non-nucleation regions. The ordered nucleation sites may be formed of a Ru-containing material and the non-nucleation regions may be formed of an oxide. The ONL is formed by nanoimprint lithography, preferably by a master mold fabricated with a method using self-assembling block copolymers for creating periodic nanometer scale features.
    Type: Grant
    Filed: December 16, 2009
    Date of Patent: November 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R Albrecht, Michael Konrad Grobis, Ernesto E. Marinero, Hal J. Rosen, Ricardo Ruiz
  • Patent number: 8035932
    Abstract: A Lorentz magnetoresistive sensor having integrated signal amplification. The sensor is constructed upon a substrate such as a semiconductor material, and an amplification circuit such as transistor is constructed directly into the substrate on which the magnetoresistive device is constructed. This integrated signal amplification greatly enhances sensor performance by eliminating a great deal of signal noise that would otherwise be added to the read signal.
    Type: Grant
    Filed: September 20, 2007
    Date of Patent: October 11, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Bruce Alvin Gurney, Ernesto E. Marinero, Andrew Stuart Troup, David Arfon Williams, Joerg Wunderlich
  • Patent number: 8021769
    Abstract: A patterned perpendicular magnetic recording medium has discrete magnetic islands, each of which has a recording layer (RL) structure that comprises two exchange-coupled ferromagnetic layers. The RL structure may be an “exchange-spring” RL structure with an upper ferromagnetic layer (MAG2), sometimes called the exchange-spring layer (ESL), ferromagnetically coupled to a lower ferromagnetic layer (MAG1), sometimes called the media layer (ML). The RL structure may also include a coupling layer (CL) between MAG1 and MAG2 that permits ferromagnetic coupling. The interlayer exchange coupling between MAG1 and MAG2 may be optimized, in part, by adjusting the materials and thickness of the CL. The RL structure may also include a ferromagnetic lateral coupling layer (LCL) that is in contact with at least one of MAG1 and MAG2 for mediating intergranular exchange coupling in the ferromagnetic layer or layers with which it is in contact (MAG2 or MAG1).
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: September 20, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Andreas Klaus Berger, Eric E. Fullerton, Olav Hellwig, Byron Hassberg Lengsfield, III, Ernesto E. Marinero
  • Patent number: 8000062
    Abstract: A Lorentz magnetoresistive sensor that employs a gating voltage to control the momentum of charge carriers in a quantum well structure. A gate electrode can be formed at the top of the sensor structure to apply a gate voltage. The application of the gate voltage reduces the momentum of the charge carriers, which makes their movement more easily altered by the presence of a magnetic field, thereby increasing the sensitivity of the sensor.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 16, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Bruce Alvin Gurney, Ernesto E. Marinero
  • Publication number: 20110151278
    Abstract: A magnetic disk according to one embodiment includes a recording layer; and a layer of graphene formed above the recording layer. A nucleation layer may be formed between the recording layer and the graphene layer in some approaches. A magnetic device according to another embodiment includes a transducer; a nucleation layer formed above the transducer; and a layer of graphene formed on the nucleation layer. A method according to one embodiment includes forming a nucleation layer above a magnetic layer of a magnetic disk or magnetic device; and forming a layer of graphene on the nucleation layer. A method according to another embodiment includes depositing SiC above a magnetic layer of a magnetic disk or magnetic device, the SiC being equivalent to several monolayers thick; and surface heating the SiC to selectively evaporate some of the Si from the SiC for forming a layer of graphene on a SiC layer. Additional products and methods are also presented.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Bruce A. Gurney, Ernesto E. Marinero, Simone Pisana
  • Publication number: 20110143169
    Abstract: A continuous-media perpendicular magnetic recording disk with an oxide-containing granular Co alloy recording layer (RL) having minimal grain size dispersion has an ordered nucleation layer (ONL) formed below RL. The ONL has ordered nucleation sites arranged in a generally repetitive pattern. The nucleation sites are generally surrounded by non-nucleation regions of a different material than the nucleation sites. The Co-alloy grains of the subsequently deposited RL grow on the nucleation sites and the oxide of the RL become generally segregated on the non-nucleation regions. The ordered nucleation sites may be formed of a Ru-containing material and the non-nucleation regions may be formed of an oxide. The ONL is formed by nanoimprint lithography, preferably by a master mold fabricated with a method using self-assembling block copolymers for creating periodic nanometer scale features.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 16, 2011
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Thomas R. Albrecht, Michael Konrad Grobis, Ernesto E. Marinero, Hal J. Rosen, Ricardo Ruiz
  • Publication number: 20110086440
    Abstract: A method for manufacturing an extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Application
    Filed: December 17, 2010
    Publication date: April 14, 2011
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Publication number: 20110068320
    Abstract: An electronic device employing a graphene layer as a charge carrier layer. The graphene layer is sandwiched between layers that are constructed of a material having a highly ordered crystalline structure and a high dielectric constant. The highly ordered crystalline structure of the layers surrounding the graphene layer has low density of charged defects that can lead to scattering of charge carriers in the graphene layer. The high dielectric constant of the layers surrounding the graphene layer also prevents charge carrier scattering by minimizing interaction between the charge carriers and the charged defects in the surrounding layers. An interracial layer constructed of a thin, non-polar, dielectric material can also be provided between the graphene layer and each of the highly ordered crystalline high dielectric constant layers to minimize charge carrier scattering in the graphene layer through remote interfacial phonons.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 24, 2011
    Inventors: Ernesto E. Marinero, Simone Pisana
  • Patent number: 7881020
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having reduced size and increased resolution is described. The sensor includes a plurality of electrically conductive leads contacting a magnetically active layer and also includes an electrically conductive shunt structure. The electrically conductive leads of the sensor and the shunt structure can be formed in a common photolithographic masking and etching process so that they are self aligned with one another. This avoids the need to align multiple photolithographic processing steps, thereby allowing greatly increased resolution and reduced lead spacing. The EMR sensor can be formed with a magnetically active layer that can be close to or at the air bearing surface (ABS) for improved magnetic spacing with an adjacent magnetic medium of a data recording system.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Dudley Boone, Jr., Liesl Folks, Bruce Alvin Gurney, Jordan Asher Katine, Ernesto E. Marinero, Neil Smith
  • Patent number: 7848060
    Abstract: A magnetic storage system according to one embodiment includes magnetic media containing magnetic domain tracks; and at least one head for reading from the magnetic media, each head having: a first Extraordinary Magentoresistive (EMR) device for detecting magnetic fields of a first magnetic domain track; a second EMR device for detecting magnetic fields of a second magnetic domain track. The system further includes a slider for supporting the head; and a control unit coupled to the head for controlling operation of the head. A system according to another embodiment includes a first Extraordinary Magnetoresistive (EMR) device for detecting magnetic fields of a magnetic domain of interest. A system according to yet another embodiment includes an Extraordinary Magnetoresistive (EMR) device for deriving servoing information.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Bruce Alvin Gurney, Ernesto E. Marinero
  • Patent number: 7833640
    Abstract: An improved structure for the construction of perpendicular recording media is disclosed. The structure includes a tri-layer IML resident between a soft under layer CoTaZr film and a CoPtCr—SiO2 magnetic media. In an embodiment, the tri-layer comprises a RuxCr1?x layer over dual nucleation layers of Ni—Fe and Ni—Fe—Cr. The tri-layer replaces the typical Ru and Ni—Fe intermediate layers of the prior art, resulting in considerable improvement in lattice matching between the Ru containing intermediate layer and the CoPtCr—SiO2 magnetic media, further resulting in improved magnetic media performance.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 16, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernesto E. Marinero, Natacha Frederique Supper, Brian R. York
  • Publication number: 20100178529
    Abstract: A perpendicular magnetic recording disk has a granular cobalt alloy recording layer (RL) containing an additive oxide or oxides, an intermediate layer (IL) as an exchange-break layer on the “soft” magnetic underlayer (SUL), and an ultrathin nucleation film (NF) between the IL and the RL. In the method of making the disk, the IL is deposited at a relatively low sputtering pressure, to thereby reduce the roughness of the RL and overcoat (OC), while the NF and RL are deposited at substantially higher sputtering pressures. The resulting disk has good recording properties and improved corrosion resistance over a comparable disk made with an IL deposited at high sputtering pressure and without the NF. The NF may be a discontinuous film with an average thickness of less than about 1 nm.
    Type: Application
    Filed: March 24, 2010
    Publication date: July 15, 2010
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventor: Ernesto E. Marinero