Patents by Inventor Ernesto Lasalandra

Ernesto Lasalandra has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10894713
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: January 19, 2021
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Publication number: 20180118561
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Application
    Filed: January 5, 2018
    Publication date: May 3, 2018
    Inventors: Ernesto LASALANDRA, Angelo MERASSI, Sarah Zerbini
  • Patent number: 9878903
    Abstract: Methods of forming micro-electromechanical device include a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 30, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Patent number: 9523725
    Abstract: Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitive to voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: December 20, 2016
    Assignees: STMICROELECTRONICS ASIA PACIFIC PTE LTD, STMICROELECTRONICS S.R.L.
    Inventors: Kien Beng Tan, Ernesto Lasalandra, Tommaso Ungaretti, Yannick Guedon, Dianbo Guo, Paolo Angelini, Giovanni Carlo Tripoli
  • Patent number: 9389256
    Abstract: Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: July 12, 2016
    Assignees: STMicroelectronics Asia Pacific Pte Ltd, STMicroelectronics S.r.l.
    Inventors: Paolo Angelini, Giovanni Carlo Tripoli, Ernesto Lasalandra, Tommaso Ungaretti, Kien Beng Tan, Yannick Guedon, Dianbo Guo, Sze-Kwang Tan
  • Patent number: 9217641
    Abstract: A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: December 22, 2015
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Carlo Caminada, Luciano Prandi, Ernesto Lasalandra
  • Patent number: 9201090
    Abstract: A detection circuit is provided with a differential capacitive sensor and with an interface circuit having a first sense input and a second sense input, electrically connected to the differential capacitive sensor. Provided in the interface circuit are: a sense amplifier connected at input to the first sense input and to the second sense input and supplying an output signal related to a capacitive unbalancing of the differential capacitive sensor; and a common-mode control circuit, connected to the first sense input and to the second sense input and configured to control a common-mode electrical quantity present on the first sense input and on the second sense input. The common-mode control circuit is of a totally passive type and is provided with a capacitive circuit, which is substantially identical to an equivalent electrical circuit of the differential capacitive sensor and is driven with a driving signal in phase opposition with respect to a read signal supplied to the differential capacitive sensor.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: December 1, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Tommaso Ungaretti, Ernesto Lasalandra
  • Publication number: 20150308829
    Abstract: A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
    Type: Application
    Filed: July 15, 2014
    Publication date: October 29, 2015
    Inventors: Carlo Caminada, Luciano Prandi, Ernesto Lasalandra
  • Publication number: 20150284243
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Application
    Filed: May 6, 2014
    Publication date: October 8, 2015
    Applicant: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Patent number: 9128573
    Abstract: Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: September 8, 2015
    Assignees: STMicroelectronics S.r.l.;, STMicroelectronics Asia Pacific Pte Ltd
    Inventors: Paolo Angelini, Giovanni Carlo Tripoli, Ernesto Lasalandra, Tommaso Ungaretti, Kien Beng Tan, Yannick Guedon, Dianbo Guo, Sze-Kwang Tan
  • Publication number: 20150145801
    Abstract: Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
    Type: Application
    Filed: September 14, 2012
    Publication date: May 28, 2015
    Applicants: STMicroelectronics Asia Pacific Pte. Ltd., STMicroelectronics S.r.I.
    Inventors: Paolo Angelini, Giovanni Carlo Tripoli, Ernesto Lasalandra, Tommaso Ungaretti, Kien Beng Tan, Yannick Guedon, Dianbo Guo, Sze-Kwang Tan
  • Patent number: 8976151
    Abstract: Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a dual mode switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitance-to-voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 10, 2015
    Assignees: STMicroelectronics Asia Pacific Pte Ltd, STMicroelectronics S.r.l.
    Inventors: Kien Beng Tan, Ernesto Lasalandra, Tommaso Ungaretti, Yannick Guedon, Dianbo Guo, Paolo Angelini, Giovanni Carlo Tripoli
  • Publication number: 20140312919
    Abstract: Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitive to voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
    Type: Application
    Filed: July 2, 2014
    Publication date: October 23, 2014
    Applicants: STMICROELECTRONICS ASIA PACIFIC PTE LTD, STMICROELECTRONICS S.R.L.
    Inventors: Kien Beng Tan, Ernesto Lasalandra, Tommaso Ungaretti, Yannick Guedon, Dianbo Guo, Paolo Angelini, Giovanni Carlo Tripoli
  • Patent number: 8800369
    Abstract: A microelectromechanical gyroscope that includes a first mass oscillatable according to a first axis; an inertial sensor, including a second mass, drawn along by the first mass and constrained so as to oscillate according to a second axis, in response to a rotation of the gyroscope; a driving device coupled to the first mass so as to form a feedback control loop and configured to maintain the first mass in oscillation at a resonance frequency; and an open-loop reading device coupled to the inertial sensor for detecting displacements of the second mass according to the second axis. The driving device includes a read signal generator for supplying to the inertial sensor at least one read signal having the form of a square-wave signal of amplitude that sinusoidally varies with the resonance frequency.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: August 12, 2014
    Assignee: STMicroelectronics S.R.L.
    Inventors: Carlo Caminada, Luciano Prandi, Ernesto Lasalandra
  • Patent number: 8733170
    Abstract: A micro-electromechanical device includes a semiconductor substrate, in which a first microstructure and a second microstructure of reference are integrated. The first microstructure and the second microstructure are arranged in the substrate so as to undergo equal strains as a result of thermal expansions of the substrate. Furthermore, the first microstructure is provided with movable parts and fixed parts with respect to the substrate, while the second microstructure has a shape that is substantially symmetrical to the first microstructure but is fixed with respect to the substrate. By subtracting the changes in electrical characteristics of the second microstructure from those of the first, variations in electrical characteristics of the first microstructure caused by changes in thermal expansion or contraction can be compensated for.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: May 27, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Ernesto Lasalandra, Angelo Merassi, Sarah Zerbini
  • Publication number: 20140077823
    Abstract: Capacitance sensing circuits and methods are provided. The capacitance sensing circuit includes a capacitance-to-voltage converter configured to receive a signal from a capacitance to be sensed and to provide an output signal representative of the capacitance, an output chopper configured to convert the output signal of the capacitance-to-voltage converter to a sensed voltage representative of the capacitance to be sensed, an analog accumulator configured to accumulate sensed voltages during an accumulation period of NA sensing cycles and to provide an accumulated analog value, an amplifier configured to amplify the accumulated analog value, and an analog-to-digital converter configured to convert the amplified accumulated analog value to a digital value representative of the capacitance to be sensed. The analog accumulator may include a low pass filter having a frequency response to filter wideband noise.
    Type: Application
    Filed: December 18, 2012
    Publication date: March 20, 2014
    Applicants: STMicroelectronics Asia Pacific Pte. Ltd., STMicroelectronics S.r.I.
    Inventors: Paolo Angelini, Giovanni Carlo Tripoli, Ernesto Lasalandra, Tommaso Ungaretti, Kien Beng Tan, Yannick Guedon, Dianbo Guo, Sze-Kwang Tan
  • Publication number: 20140078096
    Abstract: Capacitance sensing circuits and methods are provided. A dual mode capacitance sensing circuit includes a capacitance-to-voltage converter having an amplifier and an integration capacitance coupled between an output and an inverting input of the amplifier, and a dual mode switching circuit responsive to mutual mode control signals for a controlling signal supplied from a capacitive touch matrix to the capacitance-to-voltage converter in a mutual capacitance sensing mode and responsive to self mode control signals for controlling signals supplied from the capacitive touch matrix to the capacitance-to-voltage converter in a self capacitance sensing mode, wherein the capacitance sensing circuit is configurable for operation in the mutual capacitance sensing mode or the self capacitance sensing mode.
    Type: Application
    Filed: December 18, 2012
    Publication date: March 20, 2014
    Applicants: STMicroelectronics Asia Pacific Pte. Ltd., STMicroelectronics S.r.I.
    Inventors: Kien Beng Tan, Ernesto Lasalandra, Tommaso Ungaretti, Yannick Guedon, Dianbo Guo, Paolo Angelini, Giovanni Carlo Tripoli
  • Patent number: 8661871
    Abstract: Described herein is a method for testing a microelectromechanical device provided with a microstructure having a fixed structure and a movable mass, which is capacitively coupled to the fixed structure and mechanically connected thereto so as to be movable between a rest position and at least one position of maximum extension. The method envisages: applying a test voltage between the movable mass and the fixed structure so as to set up an electrostatic force between them and displace the movable mass into the position of maximum extension; keeping the movable mass in the position of maximum extension for a time interval; releasing the movable mass from the position of maximum extension; and detecting a current position of the movable mass.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: March 4, 2014
    Assignee: STMicroelectronics S.r.l.
    Inventors: Giovanni Carlo Tripoli, Tommaso Ungaretti, Ernesto Lasalandra
  • Patent number: RE45439
    Abstract: A microelectromechanical gyroscope having a microstructure that includes a first mass and a second mass, wherein the first mass is oscillatable according to a first axis and the second mass is constrained to the first mass so as to be drawn along by the first mass according to the first axis and to oscillate according to a second axis, in response to a rotation of the microstructure, a driving device coupled to the microstructure to maintain the first mass in oscillation at the driving frequency, and a reading device that detects displacements of the second mass according to the second axis. The gyroscope is provided with a self-test actuation system coupled to the second mass for applying an electrostatic force at the driving frequency so as to move the second mass according to the second axis.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: March 31, 2015
    Assignee: STMicroelectronics S.r.l.
    Inventors: Luciano Prandi, Carlo Caminada, Ernesto Lasalandra
  • Patent number: RE46671
    Abstract: A substrate-level assembly having a device substrate of semiconductor material with a top face and housing a first integrated device, including a buried cavity formed within the device substrate, and with a membrane suspended over the buried cavity in the proximity of the top face. A capping substrate is coupled to the device substrate above the top face so as to cover the first integrated device in such a manner that a first empty space is provided above the membrane. Electrical-contact elements electrically connect the integrated device with the outside of the substrate-level assembly. In one embodiment, the device substrate integrates at least a further integrated device provided with a respective membrane, and a further empty space, fluidly isolated from the first empty space, is provided over the respective membrane of the further integrated device.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: January 16, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Chantal Combi, Benedetto Vigna, Federico Giovanni Ziglioli, Lorenzo Baldo, Manuela Magugliani, Ernesto Lasalandra, Caterina Riva