Patents by Inventor Erno H. Klaassen

Erno H. Klaassen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11026628
    Abstract: Disclosed herein are devices and methods of using a mobile or wearable device for the acquisition and spatial filtering of ECG signals from an electrode array. One variation of a mobile or wearable device comprises an array of electrodes, one or more reference electrodes, and a controller in communication with the electrodes. In one example, the one or more reference electrodes are located on a wrist-worn device (e.g., a watch), and the electrode array is located on an accessory device that may be contacted with a fingertip. One variation of a spatial filtering method comprises identifying the electrodes that have high levels of noise and excluding the ECG signals from those electrodes from further analyses. In another variation, a method of spatial filtering comprises identifying electrodes with low levels of noise and including only the ECG signals from those electrodes in further analyses.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 8, 2021
    Assignee: Apple Inc.
    Inventors: Johannes Anne Bruinsma, Erno H. Klaassen, Paras Samsukha, Xiaoyu Guo
  • Publication number: 20210113106
    Abstract: Techniques are provided for tracking heartrate metrics using different operating modes associated with different contexts of a wearable device. For example, a heartrate sensor of the wearable device may be operated in a first operating mode when an activity is being tracked within an application session of a particular application. The heartrate sensor may be operated in a second operating mode after detecting conclusion of the activity within the activity session (e.g., during sedentary time).
    Type: Application
    Filed: December 23, 2020
    Publication date: April 22, 2021
    Applicant: Apple Inc.
    Inventors: Christian Schroeder, Divya Padmanabhan, Erno H. Klaassen, Evan R. Doll, Ian R. Shapiro, Jay Kriz Blahnik, Roxanne B. Brittain, Stephen J. Waydo, Joefrey S. Kibuule, Alexa VanHattum
  • Publication number: 20210085091
    Abstract: An in-bed haptic device may include an array of actuation cells. Actuation cells of the array of actuation cells may be configured to actuate (e.g., expand, contract, or otherwise change shape) in a predetermined sequence to provide haptic outputs. The in-bed haptic device may be configured to be placed beneath a user during use, for example between a user and a mattress. The haptic outputs may be provided to help a user relax, to move and/or wake a user, to indicate outputs, alerts, or notifications at the in-bed haptic device or another electronic device, or the like.
    Type: Application
    Filed: September 14, 2020
    Publication date: March 25, 2021
    Inventors: Riley E. Brandt, Linda Benavente-Notaro, Antonio Herrera, Denis Lin, Zijing Zeng, Erno H. Klaassen, Zhipeng Zhang
  • Patent number: 10874313
    Abstract: Embodiments of the present disclosure can provide systems, methods, and computer-readable medium for tracking the heartrate of a user using different techniques associated with different contexts. For example, motion of a user wearing a wearable device can be tracked using at least first sensors of the one or more sensors. The physical state of the user can also be tracked using at least second sensors of the one or more sensors. In some cases it can be determines whether an application of the wearable device has been launched. Additionally, an activity category of the user can be determined based at least in part on the motion of the user, the physical state of the user, and/or whether the application has been launched. Heartrate data of the user can be collected, and the heartrate data can be categorized based at least in part on the determined category.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: December 29, 2020
    Assignee: Apple Inc.
    Inventors: Christian Schroeder, Divya Padmanabhan, Erno H. Klaassen, Evan R. Doll, Ian R. Shapiro, Jay Kriz Blahnik, Roxanne B. Brittain, Stephen J. Waydo, Joefrey S. Kibuule, Alexa VanHattum
  • Publication number: 20200367760
    Abstract: Methods and devices for obtaining a blood pressure measurement of a subject measure a transit time of a blood pulse of the subject. A method includes sensing, with a pulse ejection sensor of a wrist-worn device, ejection of blood from the left ventricle. Arrival of a resulting blood pressure pulse at the wrist is sensed via a pulse arrival sensor of the wrist-worn device. A transit time of the blood pressure pulse from the left ventricle to the wrist is determined. A relative blood pressure value of the subject is determined based on the transit time. A reference absolute blood pressure value associated with the relative blood pressure value is received. An absolute blood pressure value for the relative blood pressure value is determined based on the reference absolute blood pressure value and the relative blood pressure value.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 26, 2020
    Inventors: Erno H. Klaassen, Wren Nancy Dougherty, Richard C. Kimoto, Ravi K. Narasimhan, Thomas J. Sullivan, Stephen J. Waydo, Todd K. Whitehurst, Santiago Quijano, Derek Park-Shing Young, Zijing Zeng
  • Patent number: 10772512
    Abstract: The present invention provides non-invasive devices, methods, and systems for determining a pressure of blood within a cardiovascular system of a user, the cardiovascular system including a heart and the user having a wrist covered by skin. More particularly, the present invention discloses a variety of wrist-worn devices having a variety of sensors configured to non-invasively engage the skin on the wrist of the user for sensing a variety of user signals from the cardiovascular system of the user. Generally, approaches disclosed herein may passively track blood pressure values without any interaction required on the part of the user or may allow for on demand or point measurements of blood pressure values by having a user actively interact with the sensors of the wrist-worn device.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: September 15, 2020
    Inventors: Erno H. Klaassen, Wren Nancy Dougherty, Richard C. Kimoto, Ravi Narasimhan, Thomas J. Sullivan, Stephen J. Waydo, Todd K. Whitehurst, Santiago Quijano, Derek Park-Shing Young, Zijing Zeng
  • Patent number: 10726731
    Abstract: A breathing sequence may define a suggested breathing pattern. Based on signal data collected by a user device, an initial breathing pattern that includes a cyclic pattern may be estimated. A first period of the breathing sequence may be initiated by generating a breathing sequence element based on a synchronization of the cyclic pattern with the breathing sequence. The breathing sequence element may fluctuate during a second period of the breathing sequence in accordance with a breathing profile associated with the suggested breathing pattern.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: July 28, 2020
    Assignee: Apple Inc.
    Inventors: Julie A. Arney, Erno H. Klaassen, Jay C. Blahnik, Alan C. Dye, Gary I. Butcher, Kevin M. Lynch, Christopher J. Brouse, Nader E. Bagherzadeh, Gracee Agrawal, Stephen J. Waydo
  • Publication number: 20200107785
    Abstract: This relates to a monitoring system capable of measuring a plurality of vital signs. The monitoring system can include a plurality of sensors including, but not limited to, electrodes, piezoelectric sensors, temperature sensors, and accelerometers. The monitoring system can be capable of operating in one or more operation modes such as, for example: capacitance measurement mode, electrical measurement mode, piezoelectric measurement mode, temperature measurement mode, acceleration measurement mode, impedance measurement mode, and standby mode. Based on the measured values, the monitoring system can analyze the user's sleep, provide feedback and suggestions to the user, and/or can adjust or control the environmental conditions to improve the user's sleep. The monitoring system can further be capable of analyzing the sleep of the user(s) without directly contacting or attaching uncomfortable probes to the user(s) and without having to analyze the sleep in an unknown environment (e.g., a medical facility).
    Type: Application
    Filed: August 26, 2019
    Publication date: April 9, 2020
    Inventors: Shahrooz SHAHPARNIA, Erno H. KLAASSEN
  • Patent number: 10512432
    Abstract: This relates to a monitoring system capable of measuring a plurality of vital signs. The monitoring system can include a plurality of sensors including, but not limited to, electrodes, piezoelectric sensors, temperature sensors, and accelerometers. The monitoring system can be capable of operating in one or more operation modes such as, for example: capacitance measurement mode, electrical measurement mode, piezoelectric measurement mode, temperature measurement mode, acceleration measurement mode, impedance measurement mode, and standby mode. Based on the measured values, the monitoring system can analyze the user's sleep, provide feedback and suggestions to the user, and/or can adjust or control the environmental conditions to improve the user's sleep. The monitoring system can further be capable of analyzing the sleep of the user(s) without directly contacting or attaching uncomfortable probes to the user(s) and without having to analyze the sleep in an unknown environment (e.g., a medical facility).
    Type: Grant
    Filed: August 11, 2017
    Date of Patent: December 24, 2019
    Assignee: Apple Inc.
    Inventors: Shahrooz Shahparnia, Erno H. Klaassen
  • Patent number: 10394359
    Abstract: A sensing device can be included in a display of an electronic device. Various techniques can be used to reduce display noise in the signals output from the sensing device. The techniques include the use of a filtering layer in a display stack, the use of a non-uniform sampling scheme, averaging together noise signal samples sampled over multiple display frames, and inverting a phase of the sampling of the noise signal over multiple display frames.
    Type: Grant
    Filed: August 4, 2017
    Date of Patent: August 27, 2019
    Assignee: Apple Inc.
    Inventors: Manu Agarwal, Erno H. Klaassen, Hopil Bae, Kingsuk Brahma
  • Patent number: 10324032
    Abstract: Disclosed herein is a sunscreen detector for use with portable device, such as a mobile and/or wearable device. One variation of a sunscreen detector comprises an illumination system that is configured to illuminate a target skin area with ultraviolet and/or infrared spectrum light and a sensor system that is configured to detect the amount of ultraviolet and/or infrared spectrum light that is reflected from the target skin area. The sunscreen detector is configured to analyze the data collected by the sensor system to generate a notification to the user as to whether they should apply sunscreen.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: June 18, 2019
    Assignee: Apple Inc.
    Inventors: Serhan O. Isikman, Brian R. Land, Erno H. Klaassen
  • Publication number: 20180344181
    Abstract: Embodiments of the present disclosure can provide systems, methods, and computer-readable medium for tracking the heartrate of a user using different techniques associated with different contexts. For example, motion of a user wearing a wearable device can be tracked using at least first sensors of the one or more sensors. The physical state of the user can also be tracked using at least second sensors of the one or more sensors. In some cases it can be determines whether an application of the wearable device has been launched. Additionally, an activity category of the user can be determined based at least in part on the motion of the user, the physical state of the user, and/or whether the application has been launched. Heartrate data of the user can be collected, and the heartrate data can be categorized based at least in part on the determined category.
    Type: Application
    Filed: December 15, 2017
    Publication date: December 6, 2018
    Applicant: Apple Inc.
    Inventors: Christian Schroeder, Divya Padmanabhan, Erno H. Klaassen, Evan R. Doll, Ian R. Shapiro, Jay Kriz Blahnik, Roxanne B. Brittain, Stephen J. Waydo, Joefrey S. Kibuule, Alexa VanHattum
  • Patent number: 10132680
    Abstract: A UV dosimeter function is provided in a portable multifunction device. The device utilizes a UV light sensor to detect the user's presence while outdoors and measure the cumulative outdoor exposure time. The cumulative UV exposure is optionally provided via a messaging service or alert, and a UV index value is optionally utilized with the cumulative outdoor exposure to determine the risk of skin damage and to provide user guidance relating to recommended protective measures. An ambient light sensor is optionally provided and is used to augment the UV light thresholds used to determine the light exposure state.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: November 20, 2018
    Assignee: Apple Inc.
    Inventors: Serhan O. Isikman, Brian R. Land, Erno H. Klaassen
  • Publication number: 20180202927
    Abstract: Disclosed herein is a sunscreen detector for use with portable device, such as a mobile and/or wearable device. One variation of a sunscreen detector comprises an illumination system that is configured to illuminate a target skin area with ultraviolet and/or infrared spectrum light and a sensor system that is configured to detect the amount of ultraviolet and/or infrared spectrum light that is reflected from the target skin area. The sunscreen detector is configured to analyze the data collected by the sensor system to generate a notification to the user as to whether they should apply sunscreen.
    Type: Application
    Filed: December 18, 2017
    Publication date: July 19, 2018
    Inventors: Serhan O. ISIKMAN, Brian R. LAND, Erno H. KLAASSEN
  • Publication number: 20180042556
    Abstract: This relates to a monitoring system capable of measuring a plurality of vital signs. The monitoring system can include a plurality of sensors including, but not limited to, electrodes, piezoelectric sensors, temperature sensors, and accelerometers. The monitoring system can be capable of operating in one or more operation modes such as, for example: capacitance measurement mode, electrical measurement mode, piezoelectric measurement mode, temperature measurement mode, acceleration measurement mode, impedance measurement mode, and standby mode. Based on the measured values, the monitoring system can analyze the user's sleep, provide feedback and suggestions to the user, and/or can adjust or control the environmental conditions to improve the user's sleep. The monitoring system can further be capable of analyzing the sleep of the user(s) without directly contacting or attaching uncomfortable probes to the user(s) and without having to analyze the sleep in an unknown environment (e.g., a medical facility).
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Shahrooz SHAHPARNIA, Erno H. KLAASSEN
  • Patent number: 9851298
    Abstract: Disclosed herein is a sunscreen detector for use with portable device, such as a mobile and/or wearable device. One variation of a sunscreen detector comprises an illumination system that is configured to illuminate a target skin area with ultraviolet and/or infrared spectrum light and a sensor system that is configured to detect the amount of ultraviolet and/or infrared spectrum light that is reflected from the target skin area. The sunscreen detector is configured to analyze the data collected by the sensor system to generate a notification to the user as to whether they should apply sunscreen.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: December 26, 2017
    Assignee: APPLE INC.
    Inventors: Serhan O. Isikman, Brian R. Land, Erno H. Klaassen
  • Publication number: 20170358240
    Abstract: A breathing sequence may define a suggested breathing pattern. Input may be received at a user interface of a device to initiate the breathing sequence. The breathing sequence may include a configuration phase in which configuration information may be received. The configuration information may define a variable time period for the breathing sequence. The breathing sequence also may include a preliminary phase during which a first version of a fluctuating progress indicator may be presented on the user interface. The fluctuating progress indicator may include a plurality of variable visual characteristics and may fluctuate at a first cyclic rate. The breathing sequence may also include a breathing phase during which a second version of the fluctuating progress indicator may be presented. The second version of the fluctuating progress indicator may fluctuate at a second cyclic rate according to a breathing rate.
    Type: Application
    Filed: January 27, 2017
    Publication date: December 14, 2017
    Applicant: Apple Inc.
    Inventors: Jay C. Blahnik, Erno H. Klaassen, Julie A. Arney, Alan C. Dye, Gary I. Butcher, Kevin M. Lynch, Nader E. Bagherzadeh, Gracee Agrawal, Stephen J. Waydo, Christopher J. Brouse
  • Publication number: 20170358239
    Abstract: A breathing sequence may define a suggested breathing pattern. Based on signal data collected by a user device, an initial breathing pattern that includes a cyclic pattern may be estimated. A first period of the breathing sequence may be initiated by generating a breathing sequence element based on a synchronization of the cyclic pattern with the breathing sequence. The breathing sequence element may fluctuate during a second period of the breathing sequence in accordance with a breathing profile associated with the suggested breathing pattern.
    Type: Application
    Filed: January 27, 2017
    Publication date: December 14, 2017
    Applicant: Apple Inc.
    Inventors: Julie A. Arney, Erno H. Klaassen, Jay C. Blahnik, Alan C. Dye, Gary I. Butcher, Kevin M. Lynch, Christopher J. Brouse, Nader E. Bagherzadeh, Gracee Agrawal, Stephen J. Waydo
  • Publication number: 20170351368
    Abstract: A sensing device can be included in a display of an electronic device. Various techniques can be used to reduce display noise in the signals output from the sensing device. The techniques include the use of a filtering layer in a display stack, the use of a non-uniform sampling scheme, averaging together noise signal samples sampled over multiple display frames, and inverting a phase of the sampling of the noise signal over multiple display frames.
    Type: Application
    Filed: August 4, 2017
    Publication date: December 7, 2017
    Inventors: Manu Agarwal, Erno H. Klaassen, Hopil Bae, Kingsuk Brahma
  • Publication number: 20170340209
    Abstract: The present invention provides non-invasive devices, methods, and systems for determining a pressure of blood within a cardiovascular system of a user, the cardiovascular system including a heart and the user having a wrist covered by skin. More particularly, the present invention discloses a variety of wrist-worn devices having a variety of sensors configured to non-invasively engage the skin on the wrist of the user for sensing a variety of user signals from the cardiovascular system of the user. Generally, approaches disclosed herein may passively track blood pressure values without any interaction required on the part of the user or may allow for on demand or point measurements of blood pressure values by having a user actively interact with the sensors of the wrist-worn device.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Inventors: Erno H. Klaassen, Wren Nancy Dougherty, Richard C. Kimoto, Ravi Narasimhan, Thomas J. Sullivan, Stephen J. Waydo, Todd K. Whitehurst, Santiago Quijano, Derek Park-Shing Young, Zijing Zeng