Patents by Inventor Eunsook Chae Barber

Eunsook Chae Barber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240215876
    Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 4, 2024
    Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Carl E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
  • Publication number: 20230210409
    Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 6, 2023
    Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Carl E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
  • Publication number: 20230210410
    Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 6, 2023
    Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Cari E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
  • Publication number: 20230210418
    Abstract: Implementations relate generally to devices for measuring an analyte in a host. Implementations may provide reduced sizes for wearable devices including a transcutaneous analyte sensor for analyte measurement.
    Type: Application
    Filed: December 30, 2022
    Publication date: July 6, 2023
    Inventors: John Charles Barry, Elshad Abdullayev, Eunsook Chae Barber, Patrick J. Castagna, John Durham, Craig Thomas Gadd, Carl E. Hoffmeier, Nicholas Kalfas, Mark Kempkey, Young Woo Lee, Nicolas Medjo, Carl Pettersen, Will Reyna, Morgan Alexander Robinson, Samuel Rogers, Jeffrey J. Smith, Terry Thom, Shanger Wang, James Woodward
  • Publication number: 20220213267
    Abstract: The present invention provides curable polyimides with low color that are resistant to long term thermo-oxidative degradation. These materials, which include polyimides that are fully aromatic, are synthesized in anisole and are contemplated for use in high temperature applications such as in the aerospace industry and for use as encapsulants for light emitting diodes that will be exposed to high temperatures.
    Type: Application
    Filed: April 17, 2020
    Publication date: July 7, 2022
    Inventors: Farhad G Mizori, Eunsook Chae Barber
  • Publication number: 20220204766
    Abstract: Curable polyimides with very good dielectric properties have been prepared. These materials also are ideal for being transformed into flexible films that are ready to be laminated for example between copper foils for applications such as copper clad laminates.
    Type: Application
    Filed: April 17, 2020
    Publication date: June 30, 2022
    Inventors: Farhad G Mizori, Eunsook Chae Barber
  • Publication number: 20220204696
    Abstract: Phenolic-terminated and phenolic pendent curable polyimides with very good dielectric properties have been prepared. These materials in combination with epoxy resins and other co-curable resins are ideal for being transformed into flexible films that are ready to be laminated for example between copper foils for applications such as copper-clad laminates for a variety of electronics applications.
    Type: Application
    Filed: April 24, 2020
    Publication date: June 30, 2022
    Inventors: Farhad G Mizori, Eunsook Chae Barber