Patents by Inventor Evan DONOGHUE

Evan DONOGHUE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11275315
    Abstract: A direct-deposition system forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. Prior to reaching the shadow mask, vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. Vaporized atoms that pass through the shadow mask exhibit little or no lateral spread after passing through through-holes and the material deposits on the substrate in a pattern that has very high fidelity with the through-hole pattern of the shadow mask.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: March 15, 2022
    Assignee: eMagin Corporation
    Inventors: Amalkumar P. Ghosh, Fridrich Vazan, Munisamy Anandan, Evan Donoghue, Ilyas I. Khayrullin, Tariq Ali, Kerry Tice
  • Patent number: 11149340
    Abstract: In a method for designing and fabricating a micro-lens array, a design is finalized by varying certain features of a shadow mask, varying a distance between a source of lens-forming material and the shadow mask, and varying other parameters until the features and distances result in the formation of a micro-lens having desired shape, etc. A shadow mask in accordance with the design is then fabricated and is appropriately positioned with respect to a micro-display and a source of lens-forming material. A plume of lens-forming material is then generated under reduced pressure and which propagates toward the shadow mask, directly patterning the micro-lenses on sub-pixels of the micro-display.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: October 19, 2021
    Assignee: eMagin Corporation
    Inventors: Ilyas I. Khayrullin, Amalkumar P. Ghosh, Ihor Wacyk, Evan Donoghue, Tariq Ali, Qi Wang, Kerry Tice
  • Patent number: 10386731
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 20, 2019
    Assignee: eMagin Corporation
    Inventors: Amalkumar P. Ghosh, Fridrich Vazan, Munisamy Anandan, Evan Donoghue, Ilyas I. Khayrullin, Tariq Ali, Kerry Tice
  • Patent number: 10072328
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through an aperture pattern of a shadow mask to deposit on the substrate in the desired pattern. Prior to reaching the shadow mask, the vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask. The present invention, therefore, mitigates the need for relatively large space between regions of deposited material normally required in the prior art, thereby enabling high-resolution patterning.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: September 11, 2018
    Assignee: eMagin Corporation
    Inventors: Amalkumar P. Ghosh, Fridrich Vazan, Munisamy Anandan, Evan Donoghue, Ilyas I. Khayrullin, Tariq Ali, Kerry Tice
  • Publication number: 20180209030
    Abstract: In a method for designing and fabricating a micro-lens array, a design is finalized by varying certain features of a shadow mask, varying a distance between a source of lens-forming material and the shadow mask, and varying other parameters until the features and distances result in the formation of a micro-lens having desired shape, etc. A shadow mask in accordance with the design is then fabricated and is appropriately positioned with respect to a micro-display and a source of lens-forming material. A plume of lens-forming material is then generated under reduced pressure and which propagates toward the shadow mask, directly patterning the micro-lenses on sub-pixels of the micro-display.
    Type: Application
    Filed: January 26, 2018
    Publication date: July 26, 2018
    Inventors: Ilyas I. KHAYRULLIN, Amalkumar P. GHOSH, Ihor WACYK, Evan DONOGHUE, Tariq ALI, Qi WANG, Kerry TICE
  • Publication number: 20170343901
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 30, 2017
    Inventors: Amalkumar P. GHOSH, Fridrich VAZAN, Munisamy ANANDAN, Evan DONOGHUE, Ilyas I. KHAYRULLIN, Tariq ALI, Kerry TICE
  • Publication number: 20170342543
    Abstract: A direct-deposition system forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through a pattern of through-holes in a shadow mask to deposit on the substrate in the desired pattern. The shadow mask is held in a mask chuck that enables the shadow mask and substrate to be separated by a distance that can be less than ten microns. Prior to reaching the shadow mask, vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. Vaporized atoms that pass through the shadow mask exhibit little or no lateral spread after passing through through-holes and the material deposits on the substrate in a pattern that has very high fidelity with the through-hole pattern of the shadow mask.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 30, 2017
    Inventors: Amalkumar P. GHOSH, Fridrich VAZAN, Munisamy ANANDAN, Evan DONOGHUE, Ilyas I. KHAYRULLIN, Tariq ALI, Kerry TICE
  • Publication number: 20170342542
    Abstract: A direct-deposition system capable of forming a high-resolution pattern of material on a substrate is disclosed. Vaporized atoms from an evaporation source pass through an aperture pattern of a shadow mask to deposit on the substrate in the desired pattern. Prior to reaching the shadow mask, the vaporized atoms pass through a collimator that operates as a spatial filter that blocks any atoms not travelling along directions that are nearly normal to the substrate surface. As a result, the vaporized atoms that pass through the shadow mask exhibit little or no lateral spread (i.e., feathering) after passing through its apertures and the material deposits on the substrate in a pattern that has very high fidelity with the aperture pattern of the shadow mask. The present invention, therefore, mitigates the need for relatively large space between regions of deposited material normally required in the prior art, thereby enabling high-resolution patterning.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 30, 2017
    Inventors: Amalkumar P. GHOSH, Fridrich VAZAN, Munisamy ANANDAN, Evan DONOGHUE, Ilyas I. KHAYRULLIN, Tariq ALI, Kerry TICE