Patents by Inventor Evgueni KABAKOV

Evgueni KABAKOV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260611
    Abstract: A system and method for detection of synthesized videos of humans. The method including: determining blood flow signals using a first machine learning model trained with a hemoglobin concentration (HC) changes training set, the first machine learning model taking as input bit values from a set of bitplanes in a captured image sequence, the HC changes training set including bit values from each bitplane of images captured from a set of subjects for which HC changes are known; determining whether blood flow patterns from the video are indicative of a synthesized video using a second machine learning model, the second machine learning model taking as input the blood flow signals, the second machine learning model trained using a blood flow training set including blood flow data signals from at least one of a plurality of videos of other human subjects for which it is known whether each video is synthesized.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 17, 2023
    Inventors: Kang LEE, Evgueni KABAKOV, Winston DE ARMAS, Alan DING, Darshan SINGH PANESAR
  • Patent number: 11676690
    Abstract: A system and method for detection of synthesized videos of humans. The method including: determining blood flow signals using a first machine learning model trained with a hemoglobin concentration (HC) changes training set, the first machine learning model taking as input bit values from a set of bitplanes in a captured image sequence, the HC changes training set including bit values from each bitplane of images captured from a set of subjects for which HC changes are known; determining whether blood flow patterns from the video are indicative of a synthesized video using a second machine learning model, the second machine learning model taking as input the blood flow signals, the second machine learning model trained using a blood flow training set including blood flow data signals from at least one of a plurality of videos of other human subjects for which it is known whether each video is synthesized.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: June 13, 2023
    Assignee: NURALOGIX CORPORATION
    Inventors: Kang Lee, Evgueni Kabakov, Winston De Armas, Alan Ding, Darshan Singh Panesar
  • Publication number: 20220262148
    Abstract: A system and method for detection of synthesized videos of humans. The method including: determining blood flow signals using a first machine learning model trained with a hemoglobin concentration (HC) changes training set, the first machine learning model taking as input bit values from a set of bitplanes in a captured image sequence, the HC changes training set including bit values from each bitplane of images captured from a set of subjects for which HC changes are known; determining whether blood flow patterns from the video are indicative of a synthesized video using a second machine learning model, the second machine learning model taking as input the blood flow signals, the second machine learning model trained using a blood flow training set including blood flow data signals from at least one of a plurality of videos of other human subjects for which it is known whether each video is synthesized.
    Type: Application
    Filed: June 30, 2020
    Publication date: August 18, 2022
    Inventors: Kang LEE, Evgueni KABAKOV, Winston DE ARMAS, Alan DING, Darshan SINGH PANESAR
  • Patent number: 11337626
    Abstract: A system and method for contactless blood pressure determination. The method includes: receiving a captured image sequence; determining, using a trained hemoglobin concentration (HC) changes machine learning model, bit values from a set of bitplanes in the captured image sequence that represent the HC changes of the subject; determining a blood flow data signal; extracting one or more domain knowledge signals associated with the determination of blood pressure; building a trained blood pressure machine learning model with a blood pressure training set, the blood pressure training set including the blood flow data signal of the one or more predetermined ROIs and the one or more domain knowledge signals; determining, using the blood pressure machine learning model trained with a blood pressure training set, an estimation of blood pressure; and outputting the determination of blood pressure.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: May 24, 2022
    Inventors: Kang Lee, Evgueni Kabakov, Phil Levy
  • Publication number: 20210085227
    Abstract: A system and method for contactless blood pressure determination. The method includes: receiving a captured image sequence; determining, using a trained hemoglobin concentration (HC) changes machine learning model, bit values from a set of bitplanes in the captured image sequence that represent the HC changes of the subject; determining a blood flow data signal; extracting one or more domain knowledge signals associated with the determination of blood pressure; building a trained blood pressure machine learning model with a blood pressure training set, the blood pressure training set including the blood flow data signal of the one or more predetermined ROIs and the one or more domain knowledge signals; determining, using the blood pressure machine learning model trained with a blood pressure training set, an estimation of blood pressure; and outputting the determination of blood pressure.
    Type: Application
    Filed: December 2, 2020
    Publication date: March 25, 2021
    Inventors: Kang LEE, Evgueni KABAKOV, Phil LEVY
  • Patent number: 10888256
    Abstract: A system and method for contactless blood pressure determination. The method includes: receiving a captured image sequence; determining, using a trained hemoglobin concentration (HC) changes machine learning model, bit values from a set of bitplanes in the captured image sequence that represent the HC changes of the subject; determining a blood flow data signal; extracting one or more domain knowledge signals associated with the determination of blood pressure; building a trained blood pressure machine learning model with a blood pressure training set, the blood pressure training set including the blood flow data signal of the one or more predetermined ROIs and the one or more domain knowledge signals; determining, using the blood pressure machine learning model trained with a blood pressure training set, an estimation of blood pressure; and outputting the determination of blood pressure.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: January 12, 2021
    Assignee: NURALOGIX CORPORATION
    Inventors: Kang Lee, Evgueni Kabakov, Phil Levy
  • Patent number: 10702173
    Abstract: A system and method for camera-based heart rate tracking. The method includes: determining bit values from a set of bitplanes in a captured image sequence that represent the HC changes; determining a facial blood flow data signal for each of a plurality of predetermined regions of interest (ROIs) of the subject captured by the images based on the HC changes; applying a band-pass filter of a passband approximating the heart rate to each of the blood flow data signals; applying a Hilbert transform to each of the blood flow data signals; adjusting the blood flow data signals from revolving phase-angles into linear phase segments; determining an instantaneous heart rate for each the blood flow data signals; applying a weighting to each of the instantaneous heart rates; and averaging the weighted instantaneous heart rates.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: July 7, 2020
    Assignee: NuraLogix Corporation
    Inventors: Kang Lee, Evgueni Kabakov, Phil Levy
  • Publication number: 20200129103
    Abstract: A system and method for contactless blood pressure determination. The method includes: receiving a captured image sequence; determining, using a trained hemoglobin concentration (HC) changes machine learning model, bit values from a set of bitplanes in the captured image sequence that represent the HC changes of the subject; determining a blood flow data signal; extracting one or more domain knowledge signals associated with the determination of blood pressure; building a trained blood pressure machine learning model with a blood pressure training set, the blood pressure training set including the blood flow data signal of the one or more predetermined ROIs and the one or more domain knowledge signals; determining, using the blood pressure machine learning model trained with a blood pressure training set, an estimation of blood pressure; and outputting the determination of blood pressure.
    Type: Application
    Filed: May 8, 2019
    Publication date: April 30, 2020
    Inventors: Kang LEE, Evgueni KABAKOV, Phil LEVY
  • Publication number: 20190328247
    Abstract: A system and method for camera-based heart rate tracking. The method includes: determining bit values from a set of bitplanes in a captured image sequence that represent the HC changes; determining a facial blood flow data signal for each of a plurality of predetermined regions of interest (ROIs) of the subject captured by the images based on the HC changes; applying a band-pass filter of a passband approximating the heart rate to each of the blood flow data signals; applying a Hilbert transform to each of the blood flow data signals; adjusting the blood flow data signals from revolving phase-angles into linear phase segments; determining an instantaneous heart rate for each the blood flow data signals; applying a weighting to each of the instantaneous heart rates; and averaging the weighted instantaneous heart rates.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Kang LEE, Evgueni KABAKOV, Phil LEVY
  • Patent number: 10448847
    Abstract: A system and method for camera-based heart rate tracking. The method includes: determining bit values from a set of bitplanes in a captured image sequence that represent the HC changes; determining a facial blood flow data signal for each of a plurality of predetermined regions of interest (ROIs) of the subject captured by the images based on the HC changes; applying a band-pass filter of a passband approximating the heart rate to each of the blood flow data signals; applying a Hilbert transform to each of the blood flow data signals; adjusting the blood flow data signals from revolving phase-angles into linear phase segments; determining an instantaneous heart rate for each the blood flow data signals; applying a weighting to each of the instantaneous heart rates; and averaging the weighted instantaneous heart rates.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: October 22, 2019
    Assignee: NURALOGIX CORPORATION
    Inventors: Kang Lee, Evgueni Kabakov, Phil Levy
  • Patent number: 10376192
    Abstract: A system and method for contactless blood pressure determination. The method includes: receiving a captured image sequence; determining, using a trained hemoglobin concentration (HC) changes machine learning model, bit values from a set of bitplanes in the captured image sequence that represent the HC changes of the subject; determining a blood flow data signal; extracting one or more domain knowledge signals associated with the determination of blood pressure; building a trained blood pressure machine learning model with a blood pressure training set, the blood pressure training set including the blood flow data signal of the one or more predetermined ROIs and the one or more domain knowledge signals; determining, using the blood pressure machine learning model trained with a blood pressure training set, an estimation of blood pressure; and outputting the determination of blood pressure.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: August 13, 2019
    Assignee: NURALOGIX CORPORATION
    Inventors: Kang Lee, Evgueni Kabakov, Phil Levy
  • Publication number: 20190038159
    Abstract: A system and method for camera-based heart rate tracking. The method includes: determining bit values from a set of bitplanes in a captured image sequence that represent the HC changes; determining a facial blood flow data signal for each of a plurality of predetermined regions of interest (ROIs) of the subject captured by the images based on the HC changes; applying a band-pass filter of a passband approximating the heart rate to each of the blood flow data signals; applying a Hilbert transform to each of the blood flow data signals; adjusting the blood flow data signals from revolving phase-angles into linear phase segments; determining an instantaneous heart rate for each the blood flow data signals; applying a weighting to each of the instantaneous heart rates; and averaging the weighted instantaneous heart rates.
    Type: Application
    Filed: October 5, 2018
    Publication date: February 7, 2019
    Inventors: Kang LEE, Evgueni KABAKOV, Phil LEVY
  • Patent number: 10117588
    Abstract: A system and method for camera-based heart rate tracking. The method includes: determining bit values from a set of bitplanes in a captured image sequence that represent the HC changes; determining a facial blood flow data signal for each of a plurality of predetermined regions of interest (ROIs) of the subject captured by the images based on the HC changes; applying a band-pass filter of a passband approximating the heart rate to each of the blood flow data signals; applying a Hilbert transform to each of the blood flow data signals; adjusting the blood flow data signals from revolving phase-angles into linear phase segments; determining an instantaneous heart rate for each the blood flow data signals; applying a weighting to each of the instantaneous heart rates; and averaging the weighted instantaneous heart rates.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: November 6, 2018
    Assignee: NURALOGIX CORPORATION
    Inventors: Kang Lee, Evgueni Kabakov, Phil Levy
  • Publication number: 20180199838
    Abstract: A system and method for camera-based heart rate tracking. The method includes: determining bit values from a set of bitplanes in a captured image sequence that represent the HC changes; determining a facial blood flow data signal for each of a plurality of predetermined regions of interest (ROIs) of the subject captured by the images based on the HC changes; applying a band-pass filter of a passband approximating the heart rate to each of the blood flow data signals; applying a Hilbert transform to each of the blood flow data signals; adjusting the blood flow data signals from revolving phase-angles into linear phase segments; determining an instantaneous heart rate for each the blood flow data signals; applying a weighting to each of the instantaneous heart rates; and averaging the weighted instantaneous heart rates.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Inventors: Kang LEE, Evgueni KABAKOV, Phil LEVY
  • Publication number: 20180199870
    Abstract: A system and method for contactless blood pressure determination. The method includes: receiving a captured image sequence; determining, using a trained hemoglobin concentration (HC) changes machine learning model, bit values from a set of bitplanes in the captured image sequence that represent the HC changes of the subject; determining a blood flow data signal; extracting one or more domain knowledge signals associated with the determination of blood pressure; building a trained blood pressure machine learning model with a blood pressure training set, the blood pressure training set including the blood flow data signal of the one or more predetermined ROIs and the one or more domain knowledge signals; determining, using the blood pressure machine learning model trained with a blood pressure training set, an estimation of blood pressure; and outputting the determination of blood pressure.
    Type: Application
    Filed: March 16, 2018
    Publication date: July 19, 2018
    Inventors: Kang LEE, Evgueni KABAKOV, Phil LEVY