Patents by Inventor Ezio Bonvini

Ezio Bonvini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190382502
    Abstract: The present invention is directed to molecules, such as monospecific antibodies and bispecific, trispecific or multispecific binding molecules, including diabodies, BiTEs, and antibodies that are capable of specifically binding to “Disintegrin and Metalloproteinase Domain-containing Protein 9” (“ADAM9”). The invention particularly concerns such binding molecules that are capable of exhibiting high affinity binding to human and non-human ADAM9. The invention further particularly relates to such molecules that are thereby cross-reactive with human ADAM9 and the ADAM9 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to all such ADAM9-binding molecules that comprise a Light Chain Variable (VL) Domain and/or a Heavy Chain Variable (VH) Domain that has been humanized and/or deimmunized so as to exhibit reduced immunogenicity upon administration of such ADAM9-binding molecule to a recipient subject.
    Type: Application
    Filed: December 21, 2017
    Publication date: December 19, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Deryk T. Loo, Juniper A. Scribner, Bhaswati Barat, Gundo Diedrich, Leslie S. Johnson, Ezio Bonvini
  • Publication number: 20190322741
    Abstract: The present invention is directed to methods for using bispecific binding molecules that possess a binding site specific for an epitope of CD32B and a binding site specific for an epitope of CD79B, and are thus capable of simultaneous binding to CD32B and CD79B. The invention particularly concerns such molecules that are bispecific antibodies or bispecific diabodies (and especially such diabodies that additionally comprise an Fc Domain). The invention is directed to the use of such molecules, and to the use of pharmaceutical compositions that contain such molecules in the treatment of inflammatory diseases or conditions.
    Type: Application
    Filed: June 6, 2017
    Publication date: October 24, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Wei Chen, Paul A. Moore, Naimish Bharat Pandya, Ezio Bonvini, Jon Marc Wigginton
  • Publication number: 20190270813
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of CD32B and one binding site specific for an epitope of CD79b (i.e., a “CD32B×CD79b bi-specific monovalent Fc diabody”). The bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to CD32B and CD79b. The invention is directed to such compositions, to pharmaceutical compositions that contain such bi-specific monovalent Fc diabodies and to methods for their use in the treatment of inflammatory diseases or conditions, and in particular, systemic lupus erythematosus (SLE) and graft vs. host disease.
    Type: Application
    Filed: May 15, 2019
    Publication date: September 5, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Kalpana Shah, Ezio Bonvini, Paul A. Moore, Wei Chen
  • Publication number: 20190233539
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Application
    Filed: October 10, 2018
    Publication date: August 1, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Patent number: 10344092
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of CD32B and one binding site specific for an epitope of CD79b (i.e., a “CD32B×CD79b bi-specific monovalent Fc diabody”). The bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to CD32B and CD79b. The invention is directed to such compositions, to pharmaceutical compositions that contain such bi-specific monovalent Fc diabodies and to methods for their use in the treatment of inflammatory diseases or conditions, and in particular, systemic lupus erythematosus (SLE) and graft vs. host disease.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: July 9, 2019
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Kalpana Shah, Ezio Bonvini, Paul A. Moore, Wei Chen
  • Publication number: 20190169292
    Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”). The present invention also is directed to such diabodies that additionally comprise an immunoglobulin Fc Domain (“bi-specific Fc diabodies and bi-specific, tetra-valent, Fc diabodies”).
    Type: Application
    Filed: November 13, 2018
    Publication date: June 6, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
  • Publication number: 20190161548
    Abstract: The present invention is directed to bispecific molecules (e.g., diabodies, bispecific antibodies, trivalent binding molecules, etc.) that possess at least one epitope-binding site that is immunospecific for an epitope of PD-1 and at least one epitope-binding site that is immunospecific for an epitope of CTLA-4 (i.e., a “PD-1×CTLA-4 bispecific molecule”). The PD-1×CTLA-4 bispecific molecules of the present invention are capable of simultaneously binding to PD-1 and to CTLA-4, particularly as such molecules are arrayed on the surfaces of human cells. The invention is directed to pharmaceutical compositions that contain such PD-1×CTLA-4 bispecific molecules, and to methods involving the use of such bispecific molecules in the treatment of cancer and other diseases and conditions. The present invention also pertains to methods of using such PD-1×CTLA-4 bispecific molecules to stimulate an immune response.
    Type: Application
    Filed: December 12, 2016
    Publication date: May 30, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Gurunadh Reddy Chichili, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20190127467
    Abstract: The present invention is directed to selected anti-PD-1 antibodies capable of binding to both cynomolgus monkey PD-1 and to human PD-1: PD-1 mAb 1, PD-1 mAb 2, PD-1 mAb 3, PD-1 mAb 4, PD-1 mAb 5, PD-1 mAb 6, PD-1 mAb 7, PD-1 mAb 8, PD-1 mAb 9, PD-1 mAb 10, PD-1 mAb 11, PD-1 mAb 12, PD-1 mAb 13, PD-1 mAb 14, or PD-1 mAb 15, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to PD-1-binding molecules that comprise PD-1 binding fragments of such anti-PD-1 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such PD-1-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of using molecules that bind PD-1 for stimulating immune responses, as well as methods of detecting PD-1.
    Type: Application
    Filed: July 28, 2016
    Publication date: May 2, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Kalpana Shah, Douglas H. Smith, Ross La Motte-Mohs, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20190127471
    Abstract: The present invention is directed to novel B7-H3-binding molecules capable of binding to human and non-human B7-H3, and in particular to such molecules that are cross-reactive with B7-H3 of a non-human primate (e.g., a cynomolgus monkey). The invention additionally pertains to B7-H3-binding molecules that comprise Variable Light Chain and/or Variable Heavy Chain (VH) Domains that have been humanized and/or deimmunized so as to exhibit a reduced immunogenicity upon administration to recipient subjects. The invention particularly pertains to bispecific, trispecific or multispecific B7-H3-binding molecules, including bispecific diabodies, BiTEs, bispecific antibodies, trivalent binding molecules, etc. that comprise: (i) such B7-H3-binding Variable Domains and (ii) a domain capable of binding to an epitope of a molecule present on the surface of an effector cell.
    Type: Application
    Filed: April 13, 2017
    Publication date: May 2, 2019
    Inventors: Deryk T. LOO, Ling HUANG, Leslie S. JOHNSON, Thomas SON, Juniper SCRIBNER, Ezio BONVINI
  • Publication number: 20190085075
    Abstract: The present invention is directed to the anti-LAG-3 antibodies, LAG-3 mAb 1, LAG-3 mAb 2, LAG-3 mAb 4, LAG-3 mAb 5, and LAG-3 mAb 6, and to humanized and chimeric versions of such antibodies. The invention additionally pertains to LAG-3-binding molecules that comprise LAG-3 binding fragments of such anti-LAG-3 antibodies, immunocongugates, and to bispecific molecules, including diabodies, BiTEs, bispecific antibodies, etc., that comprise (i) such LAG-3-binding fragments, and (ii) a domain capable of binding an epitope of a molecule involved in regulating an immune check point present on the surface of an immune cells. The present invention also pertains to methods of detecting LAG-3, as well as methods of using molecules that bind LAG-3 for stimulating immune responses.
    Type: Application
    Filed: June 7, 2016
    Publication date: March 21, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Ross La Motte-Mohs, Kalpana Shah, Douglas H. Smith, Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Scott Koenig
  • Publication number: 20190002563
    Abstract: The present invention is directed to B7-H3×CD3 bispecific monovalent diabodies, and particularly, to B7-H3×CD3 bispecific monovalent Fc diabodies, that are capable of simultaneous binding to B7-H3 and CD3. The invention is also directed to pharmaceutical compositions that contain such bispecific monovalent Fc diabodies. The invention is additionally directed to methods for the use of such diabodies in the treatment of cancer and other diseases and conditions.
    Type: Application
    Filed: August 12, 2016
    Publication date: January 3, 2019
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Paul A. Moore, Ezio Bonvini, Ling Huang, Kalpana Shah, Ralph Alderson, Gurunadh Reddy Chichili
  • Publication number: 20180371104
    Abstract: The present invention is directed to a polypeptide (for example, an antigen-binding molecule) that comprises a polypeptide portion of a deimmunized serum-binding protein capable of binding to said serum protein. The presence of the serum-binding protein extends the serum half-life of the polypeptide, relative to the serum half-life of the polypeptide if lacking the polypeptide portion of the deimmunized serum-binding protein. The invention also pertains to methods and uses that employ such molecules.
    Type: Application
    Filed: April 5, 2018
    Publication date: December 27, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Bhaswati Barat, Ling Huang, Leslie S. Johnson
  • Patent number: 10160806
    Abstract: The present invention is directed to bi-specific diabodies that comprise two or more polypeptide chains and which possess at least one Epitope-Binding Site that is immunospecific for an epitope of PD-1 and at least one Epitope-Binding Site that is immunospecific for an epitope of LAG-3 (i.e., a “PD-I×LAG-3 bi-specific diabody”). More preferably, the present invention is directed to bi-specific diabodies that comprise four polypeptide chains and which possess two Epitope-Binding Sites that are immunospecific for one (or two) epitope(s) of PD-1 and two Epitope-Binding Site that are immunospecific for one (or two) epitope(s) of LAG-3 (i.e., a “PD-1×LAG-3 bi-specific, tetra-valent diabody”).
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: December 25, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Kalpana Shah, Ross La Motte-Mohs, Paul A. Moore, Scott Koenig
  • Patent number: 10131713
    Abstract: This invention relates to antibodies that specifically bind HER2/neu, and particularly chimeric 4D5 antibodies to HER2/neu, which have reduced glycosylation as compared to known 4D5 antibodies. The invention also relates to methods of using the 4D5 antibodies and compositions comprising them in the diagnosis, prognosis and therapy of diseases such as cancer, autoimmune diseases, inflammatory disorders, and infectious disease.
    Type: Grant
    Filed: September 15, 2016
    Date of Patent: November 20, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ling Huang, Nadine Tuaillon, Ezio Bonvini
  • Publication number: 20180298100
    Abstract: This invention relates to a pharmaceutical composition that comprises a first molecule that specifically binds HER2/neu and a second molecule that specifically binds a cell-surface receptor (or its ligand) that is involved in regulating an immune checkpoint (or the ligand thereof). The invention particularly relates to the embodiment wherein the second molecule binds to PD-1. The invention also relates to the use of such pharmaceutical compositions to treat cancer and other diseases.
    Type: Application
    Filed: June 9, 2016
    Publication date: October 18, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Jon Marc Wigginton, Naimish Bharat Pandya, Robert Joseph Lechleider, Scott Koenig, Ezio Bonvini
  • Publication number: 20180118824
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise two polypeptide chains and which possess at least one binding site specific for an epitope of CD3 and one binding site specific for an epitope of gpA33 (i.e., a “gpA33×CD3 bi-specific monovalent diabody”). The present invention also is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of gpA33 and one binding site specific for an epitope of CD3 (i.e., a “gpA33×CD3 bi-specific monovalent Fc diabody”). The bi-specific monovalent diabodies and bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to gpA33 and CD3. The invention is directed to pharmaceutical compositions that contain such bi-specific monovalent diabodies or such bi-specific monovalent Fc diabodies.
    Type: Application
    Filed: November 21, 2017
    Publication date: May 3, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Paul A. Moore, Jonathan Li, Francine Zhifen Chen, Leslie S. Johnson, Kalpana Shah, Ezio Bonvini
  • Publication number: 20180094072
    Abstract: The present invention is directed to sequence-optimized CD123×CD3 bi-specific monovalent diabodies that are capable of simultaneous binding to CD123 and CD3, and to the uses of such diabodies in the treatment of hematologic malignancies.
    Type: Application
    Filed: October 12, 2017
    Publication date: April 5, 2018
    Applicant: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Ling Huang, Paul A. Moore, Gurunadh Reddy Chichili, Ralph Froman Alderson
  • Patent number: 9932400
    Abstract: The present invention is directed to bi-specific monovalent diabodies that comprise two polypeptide chains and which possess at least one binding site specific for an epitope of CD3 and one binding site specific for an epitope of gpA33 (i.e., a “gpA33×CD3 bi-specific monovalent diabody”). The present invention also is directed to bi-specific monovalent diabodies that comprise an immunoglobulin Fc Domain (“bi-specific monovalent Fc diabodies”) and are composed of three polypeptide chains and which possess at least one binding site specific for an epitope of gpA33 and one binding site specific for an epitope of CD3 (i.e., a “gpA33×CD3 bi-specific monovalent Fc diabody”). The bi-specific monovalent diabodies and bi-specific monovalent Fc diabodies of the present invention are capable of simultaneous binding to gpA33 and CD3. The invention is directed to pharmaceutical compositions that contain such bi-specific monovalent diabodies or such bi-specific monovalent Fc diabodies.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: April 3, 2018
    Assignee: MacroGenics, Inc.
    Inventors: Paul A. Moore, Jonathan Li, Francine Zhifen Chen, Leslie S. Johnson, Kalpana Shah, Ezio Bonvini
  • Patent number: 9822181
    Abstract: The present invention is directed to sequence-optimized CD 123×CD3 bi-specific monovalent diabodies that are capable of simultaneous binding to CD 123 and CD3, and to the uses of such diabodies in the treatment of hematologic malignancies.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: November 21, 2017
    Assignee: MacroGenics, Inc.
    Inventors: Ezio Bonvini, Leslie S. Johnson, Ling Huang, Paul A. Moore, Gurunadh Reddy Chichili, Ralph Froman Alderson
  • Publication number: 20170247452
    Abstract: CD 19×CD3 bi-specific monovalent diabodies, and particularly, CD 19×CD3 bi-specific monovalent Fc diabodies, are capable of simultaneous binding to CD 19 and CD3, and are used in the treatment of hematologic malignancies.
    Type: Application
    Filed: September 22, 2015
    Publication date: August 31, 2017
    Applicant: MacroGenics, Inc.
    Inventors: Leslie S. Johnson, Ezio Bonvini, Chia-Ying Kao Lam, Paul A. Moore, Liqin Liu, Scott Koenig