Patents by Inventor Fen-Ren Chien

Fen-Ren Chien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7148519
    Abstract: A GaN LED structure with a short period superlattice contacting layer is provided. The LED structure comprises, from the bottom to top, a substrate, a double buffer layer, an n-type GaN layer, a short period superlattice contacting layer, an active layer, a p-type shielding layer, and a contacting layer. The feature is to avoid the cracks or pin holes in the thick n-type GaN layer caused during the fabrication of heavily doped (n>1×1019 cm?3) thick n-type GaN contacting layer, so that the quality of the GaN contacting layer is assured. In addition, by using short period heavily silicon doped Al1-x-yGaxInyN (n++-Al1-x-yGaxInyN) to grow a superlattice structure to become a short period superlattice contacting layer structure, which is used as a low resistive n-type contacting layer in a GaInN/GaN MQW LED. In the following steps, it is easier to form an n-type ohmic contacting layer, and the overall electrical characteristics are improved.
    Type: Grant
    Filed: December 19, 2005
    Date of Patent: December 12, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060273333
    Abstract: A light emitting diode (LED) is made of a substrate and an epitaxial structure. A surface of the epitaxial structure has many mass transferred patterns. The mass transferred patterns are formed by a mass transfer method to deform an original rough surface of the epitaxial structure. The surface topography of the mass transferred patterns is smoother and more gradual than that of the original rough surface of the epitaxial structure, and thus the light extraction efficiency of the LED is improved. In addition, the issue of instrument detection errors related to device positioning due to the roughness or the patterns of the LED surface can be reduced.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 7, 2006
    Inventors: Liang-Wen Wu, Ming-Sheng Chen, Fen-Ren Chien
  • Publication number: 20060249727
    Abstract: A number of light-emitting layer structures for the GaN-based LEDs that can increase the lighting efficiency of the GaN-based LEDs on one hand and facilitate the growth of epitaxial layer with better quality on the other hand are provided. The light-emitting layer structure provided is located between the n-type GaN contact layer and the p-type GaN contact layer. Sequentially stacked on top of the n-type GaN contact layer is the light-emitting layer containing a lower barrier layer, at least one intermediate layer, and an upper barrier layer. That is, the light-emitting layer contains at least one intermediate layer interposed between the upper and lower barrier layers. When there are multiple intermediate layers inside the light-emitting layer, there is an intermediate barrier layer interposed between every two immediately adjacent intermediate layers.
    Type: Application
    Filed: July 19, 2006
    Publication date: November 9, 2006
    Inventors: Cheng-Tsang Yu, Liang-Wen Wu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 7105850
    Abstract: Disclosed is a GaN LED structure with a p-type contacting layer using Al—Mg-codoped In1?yGayN grown at low temperature, and having low resistivity. The LED structure comprises, from the bottom to top, a substrate, a buffer layer, an n-type GaN layer, an active layer, a p-type shielding layer, and a p-type contacting layer. In this invention, Mg and Al are used to co-dope the In1?yGayN to grow a low resistive p-type contacting layer at low temperature. Because of the Al—Mg-codoped, the light absorption problem of the p-type In1?yGayN layer is improved. The product, not only has the advantage of convenience of the p-type contacting layer for being manufactured at low temperature, but also shows good electrical characteristics and lowers the operating voltage of the entire element so that the energy consumption during operation is reduced and the yield rate is increased.
    Type: Grant
    Filed: February 3, 2005
    Date of Patent: September 12, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060199290
    Abstract: Disclosed is a light emitting semiconductor bonding structure and its manufacturing method. The light emitting semiconductor bonding structure includes a structure formed by bonding a substrate onto a light emitting semiconductor. The substrate is a structure containing electric circuits. The ohmic contact N electrode layer and P electrode layer are formed on the N-type contact layer and the P-type contact layer of the light emitting semiconductor respectively. The first metallic layer and the second metallic layer are formed on the surface of the substrate by means of immersion plating or deposition. The metallic layers are connected electrically to the corresponding electric signal input/output nodes of the electric circuit of the substrate.
    Type: Application
    Filed: April 26, 2006
    Publication date: September 7, 2006
    Inventors: Shyi-Ming Pan, Fen-Ren Chien
  • Patent number: 7087924
    Abstract: Disclosed is a multi-quantum-well light emitting diode, which makes enormous adjustments and improvements over the conventional light emitting diode, and further utilizes a transparent contact layer of better transmittance efficiency, so as to significantly raise the illuminance of this light emitting diode and its light emission efficiency. The multi-quantum-well light emitting diode has a structure including: substrate, buffer layer, n-type gallium-nitride layer, active light-emitting-layer, p-type cladding layer, p-type contact layer, barrier buffer layer, transparent contact layer, and the n-type electrode layer.
    Type: Grant
    Filed: September 16, 2004
    Date of Patent: August 8, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 7087922
    Abstract: A gallium-nitride based light-emitting diode structure includes a digital penetration layer to raise its reverse withstanding voltage and electrostatic discharge. The digital penetration layer is formed by alternate stacking layers of AlxInyGa1-x-yNzP1-z/AlpInqGa1-p-qNrP1-r, wherein 0?x,y,z,p,q,r?1, and AlxInyGa1-x-yNzP1-z has an energy gap greater than that of AlpInqGa1-p-qNrP1-r. The AlxInyGa1-x-yNzP1-z layers have increasing thickness and the AlpInqGa1-p-qNzP1-r layers have decreasing thickness.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: August 8, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060163681
    Abstract: A structure for a gallium-nitride (GaN) based ultraviolet photo detector is provided. The structure contains an n-type contact layer, a light absorption layer, a light penetration layer, and a p-type contact layer, sequentially stacked on a substrate from bottom to top in this order. The layers are all made of aluminum-gallium-indium-nitride (AlGaInN) compound semiconductors. By varying the composition of aluminum, gallium, and indium, the layers, on one hand, can achieve the desired band gaps so that the photo detector is highly responsive to ultraviolet lights having specific wavelengths. On the other hand, the layers have compatible lattice constants so that problems associated with excessive stress are avoided and high-quality epitaxial structure is obtained. The structure further contains a positive electrode, a light penetration contact layer, and an anti-reflective coating layer on top of the p-type contact layer, and a negative electrode on the n-type contact layer.
    Type: Application
    Filed: January 22, 2005
    Publication date: July 27, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060163682
    Abstract: An epitaxial structure for semiconducting photo detectors is provided. The epitaxial structure contains a substrate having a built-in electric circuit, a first and second metallic layers on top of said substrate electrically connected to the corresponding electrical input and output points of the substrate's electric circuit, and a semiconducting photo detecting element as the topmost part for receiving incident lights.
    Type: Application
    Filed: January 22, 2005
    Publication date: July 27, 2006
    Inventors: Shyi-Ming Pan, Fen-Ren Chien
  • Publication number: 20060145179
    Abstract: A GaN-based LED structure is provided so that the brightness and luminous efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a masking buffer layer and a roughened contact layer on top of the masking buffer layer. The masking buffer layer contains randomly distributed clusters made of a group-IV nitride SixNy (x,y?1), a group-II nitride MgwNz (w,z?1), or a group-III nitride AlsIntGa1-s-tN (0?s,t<1, s+t?1) heavily doped with at least a group-II and group-IV element such as Mg and Si. The roughened contact layer, made of AluInvGa1-u-vN (0?u,v<1, u+v?1), starts from the top surface of an underlying second contact layer not covered by the masking buffer layer's clusters, and then grows upward until it passes (but does not cover) the clusters of the masking buffer layer for an appropriate distance.
    Type: Application
    Filed: November 3, 2005
    Publication date: July 6, 2006
    Inventors: Liang-Wen Wu, Fen-Ren Chien
  • Publication number: 20060118806
    Abstract: A light emitting diode (LED) package including a chip carrier, an adhesive layer, a light emitting diode (LED) chip and an anti-aging layer is provided. The adhesive is disposed on the chip carrier. The LED chip having a light emitting layer is adhered on the chip carrier by the adhesive layer, and is electrically connected with the chip carrier. The anti-aging layer is disposed between the adhesive and the chip carrier. In the LED package described above, the light emitted from the LED being illuminated on the adhesive layer is reduced or prevented by the anti-aging layer. Therefore, the aging phenomenon of the LED package is retarded, and the lifetime of the LED package is further enhanced.
    Type: Application
    Filed: March 24, 2005
    Publication date: June 8, 2006
    Inventors: Shyi-Ming Pan, Tsung-Chieh Lin, Fen-Ren Chien
  • Patent number: 7049638
    Abstract: A GaN-based LED structure is provided so that the brightness and luminous efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a masking buffer layer on top of the p-type contact layer and a p-type roughened contact layer on top of the masking buffer layer. The masking buffer layer could be formed using MOCVD to deposit SixNy (x,y?1), MgwNz (w,z?1), or AlsIntGa1-s-tN (0?s,t<1, s+t?1) heavily doped with Si and/or Mg. The masking buffer layer is actually a mask containing multiple randomly distributed clusters. Then, on top of the masking buffer layer, a p-type roughened contact layer made of p-type AluInGa1-u-vN (0?u,v<1, u+v?1) is developed. The p-type roughened contact layer does not grow directly on top of the masking buffer layer.
    Type: Grant
    Filed: January 5, 2005
    Date of Patent: May 23, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060102909
    Abstract: A gallium-nitride based light-emitting diode structure includes a digital penetration layer to raise its reverse withstanding voltage and electrostatic discharge. The digital penetration layer is formed by alternate stacking layers of AlxInyGa1-x-yNzP1-z/AlpInqGa1-p-qNrP1-r, wherein 0?x,y,z,p,q,r?1, and AlxInyGa1-x-yNzP1-z has an energy gap greater than that of AlpInqGa1-p-qNrP1-r. The AlxInyGa1-x-yNrP1-z layers have increasing thickness and the AlpInqGa1-p-qNrP1-r layers have decreasing thickness.
    Type: Application
    Filed: November 16, 2004
    Publication date: May 18, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060102921
    Abstract: A GaN-based LED structure is provided so that the brightness and lighting efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a thin layer on top of the traditional structure. The thin layer could be formed using silicon-nitride (SiN), or it could have a superlattice structure either made of layers of SiN and undoped indium-gallium-nitride (InGaN), or made of layers SiN and undoped aluminum-gallium-indium-nitride (AlGaInN), respectively. Because of the use of SiN in the thin layer, the surfaces of the GaN-based LEDs would be micro-roughened, and the total internal reflection resulted from the GaN-based LEDs' higher index of refraction than the atmosphere could be avoided.
    Type: Application
    Filed: November 3, 2005
    Publication date: May 18, 2006
    Inventors: Liang-Wen Wu, Fen-Ren Chien
  • Publication number: 20060102930
    Abstract: A GaN-based LED structure is provided so that the brightness and lighting efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a thin layer on top of the p-type contact layer within the traditional structure. The thin layer could be formed using silicon-nitride (SiN), or it could have a superlattice structure made of either SiN and undoped indium-gallium-nitride (InGaN), or SiN and undoped aluminum-gallium-indium-nitride (AlGaInN), respectively. Because of the use of SiN in the thin layer, the surfaces of the GaN-based LEDs would be micro-roughened, and the total internal reflection resulted from the GaN-based LEDs' higher index of refraction than the atmosphere could be avoided. The GaN-based LEDs according to the invention therefore have superior external quantum efficiency and lighting efficiency.
    Type: Application
    Filed: November 12, 2004
    Publication date: May 18, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060097273
    Abstract: A GaN LED structure with a short period superlattice contacting layer is provided. The LED structure comprises, from the bottom to top, a substrate, a double buffer layer, an n-type GaN layer, a short period superlattice contacting layer, an active layer, a p-type shielding layer, and a contacting layer. The feature is to avoid the cracks or pin holes in the thick n-type GaN layer caused during the fabrication of heavily doped (n>1×1019 cm?3) thick n-type GaN contacting layer, so that the quality of the GaN contacting layer is assured. In addition, by using short period heavily silicon doped Al1-x-yGaxInyN (n++-Al1-x-yGaxInyN) to grow a superlattice structure to become a short period superlattice contacting layer structure, which is used as a low resistive n-type contacting layer in a GaInN/GaN MQW LED. In the following steps, it is easier to form an n-type ohmic contacting layer, and the overall electrical characteristics are improved.
    Type: Application
    Filed: December 19, 2005
    Publication date: May 11, 2006
    Inventors: Liang-Wen Wu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 7042018
    Abstract: A GaN LED structure with a short period superlattice digital contacting layer is provided. The LED structure comprises, from the bottom to top, a substrate, a double buffer layer, an n-type GaN layer, a short period superlattice digital contacting layer, an active layer, a p-type shielding layer, and a contacting layer. The feature is to avoid the cracks or pin holes in the thick n-type GaN layer caused during the fabrication of heavily doped (n>1×1019cm?3) thick n-type GaN contacting layer, so that the quality of the GaN contacting layer is assured. In addition, by using short period heavily doped silicon Al1-x-yGaxInyN (n++-Al1-x-yGaxInyN) to grow a superlattice structure to become a short period superlattice digital contacting layer structure, which is used as a low resistive n-type contacting layer in a GaInN/GaN MQW LED. In the following steps, it is easier to form an n-type ohmic contacting layer, and the overall electrical characteristics are improved.
    Type: Grant
    Filed: September 22, 2004
    Date of Patent: May 9, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Ru-Chin Tu, Liang-Wen Wu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 7042019
    Abstract: A structure for the n-type contact layer in the GaN-based MQW LEDs is provided. Instead of using Si-doped GaN as commonly found in conventional GaN-based MQW LEDs, the n-type contact layer provided by the present invention achieves high doping density (>1×1019 cm?3) and low resistivity through a superlattice structure combining two types of materials, AlmInnGa1-m-nN and AlpInqGa1-p-qN (0?m,n<1, 0<p,q<1, p+q?1, m<p), each having its specific composition and doping density. In addition, by controlling the composition of Al, In, and Ga in the two materials, the n-type contact layer would have a compatible lattice constant with the substrate and the epitaxial structure of the GaN-based MQW LEDs. This n-type contact layer, therefore, would not chap from the heavy Si doping, have a superior quality, and reduce the difficulties of forming n-type ohmic contact electrode. In turn, the GaN-based MQW LEDs would require a lower operation voltage.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: May 9, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Publication number: 20060086942
    Abstract: A GaN-based LED structure is provided so that the brightness and luminous efficiency of the GaN-based LED are enhanced effectively. The greatest difference between the GaN-based LEDs according to the invention and the prior arts lies in the addition of a masking buffer layer on top of the p-type contact layer and a p-type roughened contact layer on top of the masking buffer layer. The masking buffer layer could be formed using MOCVD to deposit SixNy (x,y?1), MgwNz (w,z?1), or AlsIntGa1-s-tN (0?s,t<1, s+t?1) heavily doped with Si and/or Mg. The masking buffer layer is actually a mask containing multiple randomly distributed clusters. Then, on top of the masking buffer layer, a p-type roughened contact layer made of p-type AluInvGa1-u-vN (0?u,v<1, u+v?1) is developed. The p-type roughened contact layer does not grow directly on top of the masking buffer layer.
    Type: Application
    Filed: January 5, 2005
    Publication date: April 27, 2006
    Inventors: Liang-Wen Wu, Ru-Chin Tu, Cheng-Tsang Yu, Tzu-Chi Wen, Fen-Ren Chien
  • Patent number: 7033949
    Abstract: A method for manufacturing a GaN-based light-emitting diode (LED) is provided with the following steps of: providing a substrate; forming a GaN semiconductor epitaxy layer on the substrate, the GaN semiconductor epitaxy layer further including an n-type GaN contact layer, a light-emitting layer and a p-type GaN contact layer; forming a digital penetration layer on the p-type GaN contact layer; using a multi-step dry etching method to etch the digital penetration layer, the p-type GaN contact layer, the light-emitting layer to form an n-metal forming area, etching terminating at the light-emitting layer; forming a first ohmic contact electrode on the digital penetration layer for a p-type ohmic contact layer and a second ohmic contact electrode on the n-metal forming area for an n-type ohmic contact layer; and finally, forming pads on both first and second ohmic contact electrodes.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: April 25, 2006
    Assignee: Formosa Epitaxy Incorporation
    Inventors: Wen-How Lan, Kuang-Neng Yang, Lung-Chien Chen, Fen-Ren Chien