Patents by Inventor Feras Eid

Feras Eid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230271445
    Abstract: Reusable composite stencils for spray processes, particularly for spray processes used in the fabrication of integrated circuit devices, may be fabricated having a permanent core and at least one sacrificial material layer. Thus, in operation, when a predetermined amount of the sacrificial material layer has been ablated away by a material being sprayed in the spray process, the remaining sacrificial material layer may be removed and reapplied to its original thickness. Therefore, the permanent core, which is usually expensive and/or difficult to fabricate, may be repeatedly reused.
    Type: Application
    Filed: February 25, 2022
    Publication date: August 31, 2023
    Applicant: Intel Corporation
    Inventors: Feras Eid, Wenhao Li, Jiraporn Seangatith, Paul Diglio, Xavier Brun
  • Publication number: 20230266070
    Abstract: A heat dissipation device for an integrated circuit assembly may be fabricated to include at least one heat pipe that is at least partially embedded in a base plate that is formed with an additive manufacturing process, such as cold spraying. Embedding the at least one heat pipe in the base plate, rather than soldering the heat pipe to the base plate, eliminates the thermal bottleneck presented by the soldering material and reduces the overall height or thickness of the integrated circuit assembly.
    Type: Application
    Filed: February 22, 2022
    Publication date: August 24, 2023
    Applicant: Intel Corporation
    Inventors: Feras Eid, Akhilesh Rallabandi
  • Publication number: 20230246338
    Abstract: Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) components and a second substrate that is coupled to the first substrate. The second substrate includes a first conductive layer of an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher. A mold material is disposed on the first and second substrates. The mold material includes a first region that is positioned between the first conductive layer and a second conductive layer of the antenna unit with the mold material being a dielectric material to capacitively couple the first and second conductive layers of the antenna unit.
    Type: Application
    Filed: April 11, 2023
    Publication date: August 3, 2023
    Inventors: Feras EID, Sasha N. OSTER, Telesphor KAMGAING, Georgios C. DOGIAMIS, Aleksandar ALEKSOV
  • Patent number: 11694962
    Abstract: Embodiments may relate to a microelectronic package that includes an overmold material, a redistribution layer (RDL) in the overmold material, and a die in the overmold material electrically coupled with the RDL on an active side of the die. The RDL is configured to provide electrical interconnection within the overmold material and includes at least one mold interconnect. The microelectronic package may also include a through-mold via (TMV) disposed in the overmold material and electrically coupled to the RDL by the mold interconnect. In some embodiments, the microelectronics package further includes a surface mount device (SMD) in the overmold material. The microelectronics package may also include a substrate having a face on which the overmold is disposed.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: July 4, 2023
    Assignee: Intel Corporation
    Inventors: Georgios Dogiamis, Aleksandar Aleksov, Feras Eid, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 11688665
    Abstract: An integrated circuit assembly may be formed having a substrate, a first integrated circuit device electrically attached to the substrate, a second integrated circuit device electrically attached to the first integrated circuit device, and a heat dissipation device defining a fluid chamber, wherein at least a portion of the first integrated circuit device and at least a portion of the second integrated circuit device are exposed to the fluid chamber. In further embodiments, at least one channel may be formed in an underfill material between the first integrated circuit device and the second integrated circuit device, between the first integrated circuit device and the substrate, and/or between the second integrated circuit device and the substrate, wherein the at least one channel is open to the fluid chamber.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Feras Eid, Adel Elsherbini, Johanna Swan
  • Patent number: 11688660
    Abstract: Embodiments may relate to a radio frequency (RF) multi-chip module that includes a first RF die and a second RF die. The first and second RF dies may be coupled with a package substrate at an inactive side of the respective dies. A bridge may be coupled with an active side of the first and second RF dies die such that the first and second RF dies are communicatively coupled through the bridge, and such that the first and second RF dies are at least partially between the package substrate and the bridge. Other embodiments may be described or claimed.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Feras Eid, Georgios Dogiamis, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 11676918
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). For example, in some embodiments, an IC package support may include: a first conductive structure in a dielectric material; a second conductive structure in the dielectric material; and a material in contact with the first conductive structure and the second conductive structure, wherein the material includes a polymer, and the material is different from the dielectric material. The material may act as a dielectric material below a trigger voltage, and as a conductive material above the trigger voltage.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: June 13, 2023
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Feras Eid, Johanna M. Swan, Aleksandar Aleksov, Veronica Aleman Strong
  • Patent number: 11658418
    Abstract: Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) components and a second substrate that is coupled to the first substrate. The second substrate includes a first conductive layer of an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher. A mold material is disposed on the first and second substrates. The mold material includes a first region that is positioned between the first conductive layer and a second conductive layer of the antenna unit with the mold material being a dielectric material to capacitively couple the first and second conductive layers of the antenna unit.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Feras Eid, Sasha N. Oster, Telesphor Kamgaing, Georgios C. Dogiamis, Aleksandar Aleksov
  • Patent number: 11652074
    Abstract: An apparatus is provided which comprises: a first set of one or more metal pads on a first substrate surface, the first set of one or more metal pads to couple with contacts of an integrated circuit die, a second set of one or more metal pads on the first substrate surface, the second set of one or more metal pads to couple with semiconductor surfaces of the integrated circuit die, one or more thermal regions below the first substrate surface, wherein the one or more thermal regions comprise thermally conductive material and are coupled with the second set of one or more metal pads, dielectric material adjacent the one or more thermal regions, and one or more conductive contacts on a second substrate surface, opposite the first substrate surface, the one or more conductive contacts coupled with the first set of one or more metal pads, and the one or more conductive contacts to couple with contacts of a printed circuit board. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: May 16, 2023
    Assignee: Intel Corporation
    Inventors: Feras Eid, Johanna Swan
  • Publication number: 20230133235
    Abstract: Microelectronic assemblies, related devices and methods, are disclosed herein. In some embodiments, a microelectronic assembly may include a package substrate having a first surface and an opposing second surface; a first die having a first surface and an opposing second surface embedded in a first dielectric layer, where the first surface of the first die is coupled to the second surface of the package substrate by first interconnects; a second die having a first surface and an opposing second surface embedded in a second dielectric layer, where the first surface of the second die is coupled to the second surface of the first die by second interconnects; and a third die having a first surface and an opposing second surface embedded in a third dielectric layer, where the first surface of the third die is coupled to the second surface of the second die by third interconnects.
    Type: Application
    Filed: December 29, 2022
    Publication date: May 4, 2023
    Applicant: Intel Corporation
    Inventors: Adel A. Elsherbini, Feras Eid, Johanna M. Swan, Shawna M. Liff
  • Publication number: 20230136469
    Abstract: An integrated circuit structure may be formed having a substrate, at least one integrated circuit device embedded in and electrically attached to the substrate, and a heat dissipation device in thermal contact with the integrated circuit device, wherein a first portion of the heat dissipation device extends into the substrate and wherein a second portion of the heat dissipation device extends over the substrate. In one embodiment, the heat dissipation device may comprise the first portion of the heat dissipation device formed from metallization within the substrate.
    Type: Application
    Filed: December 30, 2022
    Publication date: May 4, 2023
    Applicant: INTEL CORPORATION
    Inventors: Johanna Swan, Feras Eid, Adel Elsherbini
  • Patent number: 11641711
    Abstract: Embodiments may relate to a microelectronic package or a die thereof which includes a die, logic, or subsystem coupled with a face of the substrate. An inductor may be positioned in the substrate. Electromagnetic interference (EMI) shield elements may be positioned within the substrate and surrounding the inductor. Other embodiments may be described or claimed.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: May 2, 2023
    Assignee: Intel Corporation
    Inventors: Georgios Dogiamis, Aleksandar Aleksov, Feras Eid, Telesphor Kamgaing, Johanna M. Swan
  • Patent number: 11621208
    Abstract: An integrated circuit assembly may be formed having a substrate, a first integrated circuit device electrically attached to the substrate, a second integrated circuit device electrically attached to the first integrated circuit device, and a heat dissipation device comprising at least one first thermally conductive structure proximate at least one of the first integrated circuit device, the second integrated circuit device, and the substrate; and a second thermally conductive structure disposed over the first thermally conductive structure(s), the first integrated circuit device, and the second integrated circuit device, wherein the first thermally conductive structure(s) have a lower electrical conductivity than an electrical conductivity of the second thermally conductive structure. The first thermally conductive structure(s) may be formed by an additive process or may be pre-formed and attached to at least one of the first integrated circuit device, the second integrated circuit device, and the substrate.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Feras Eid, Adel Elsherbini, Johanna Swan
  • Patent number: 11621236
    Abstract: Disclosed herein are structures, devices, and methods for electrostatic discharge protection (ESDP) in integrated circuits (ICs). In some embodiments, an IC package support may include: a first conductive structure; a second conductive structure; and a material in contact with the first conductive structure and the second conductive structure, wherein the material includes a positive temperature coefficient material.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Feras Eid, Veronica Aleman Strong, Aleksandar Aleksov, Adel A. Elsherbini, Johanna M. Swan
  • Patent number: 11621192
    Abstract: Disclosed herein are methods to fabricate inorganic dies with organic interconnect layers and related structures and devices. In some embodiments, an integrated circuit (IC) structure may be formed to include an inorganic die and one or more organic interconnect layers on the inorganic die, wherein the organic interconnect layers include an organic dielectric. An example method includes forming organic interconnect layers over an inorganic interconnect substrate and forming passive components in the organic interconnect layer. The organic interconnect layers comprise a plurality of conductive metal layers through an organic dielectric material. The plurality of conductive metal layers comprises electrical pathways. the passive components are electrically coupled to the electrical pathways.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: April 4, 2023
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Feras Eid, Telesphor Kamgaing, Georgios Dogiamis, Johanna M. Swan
  • Publication number: 20230094979
    Abstract: Technologies for conformal power delivery structures near high-speed signal traces are disclosed. In one embodiment, a dielectric layer may be used to keep a power delivery structure spaced apart from high-speed signal traces, preventing deterioration of signals on the high-speed signal traces due to capacitive coupling to the power delivery structure.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Henning Braunisch, Feras Eid, Adel Elsherbini, Stephen Morein, Yoshihiro Tomita, Thomas L. Sounart, Johanna Swan, Brandon M. Rawlings
  • Publication number: 20230096368
    Abstract: An inductor structure, a package substrate, an integrated circuit device, an integrated circuit device assembly and a method of fabricating the inductor structure. The inductor structure includes: an electrically conductive body; and a magnetic structure including a non-electrically-conductive magnetic material, wherein: one of the magnetic structure or the electrically conductive body wraps around another one of the magnetic structure or the electrically conductive body to form the inductor structure therewith; and at least one of the electrically conductive body or the magnetic structure has a granular microstructure including randomly distributed particles presenting substantially non-linear particle-to-particle boundaries with one another.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Aleksandar Aleksov, Adel Elsherbini, Johanna Swan, Feras Eid, Thomas L. Sounart, Henning Braunisch, Beomseok Choi, Krishna Bharath, Kaladhar Radhakrishnan, William J. Lambert
  • Publication number: 20230095608
    Abstract: A embedded passive structure, a microelectronic system, and an integrated circuit device assembly, and a method of forming the embedded passive structure. The embedded passive structure includes a base layer; a passive device attached to the base layer; a first power plane comprising metal and adjacent an upper surface of the base layer, the first power plane having a portion electrically coupled to a terminal of the passive device, wherein an upper surface of a combination of the first power plane and the passive device defines a recess; a second power plane comprising metal, the second power plane at least partially within the recess and having a lower surface that conforms with the upper surface of the combination; and a liner including a dielectric layer between the first power plane and the second power plane.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Adel Elsherbini, Aleksandar Aleksov, Feras Eid, Henning Braunisch, Thomas L. Sounart, Johanna Swan, Beomseok Choi, Krishna Bharath, William J. Lambert, Kaladhar Radhakrishnan
  • Publication number: 20230098020
    Abstract: Technologies for cooling conformal power delivery structures are disclosed. In one embodiment, an integrated circuit component has a die with a backside power plane mated to it. A lid of the integrated circuit component is mated with the backside power plane, forming a sealed cavity. The lid has an inlet and an outlet, and a channel is defined in the lid for liquid coolant to flow from the inlet, across the backside power plane, and to the outlet. The liquid coolant directly contacts the backside power plane, efficiently removing heat from the backside power plane.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Feras Eid, Aleksandar Aleksov, Henning Braunisch, Adel Elsherbini, Thomas L. Sounart, Johanna Swan
  • Publication number: 20230098710
    Abstract: Technologies for high throughput additive manufacturing (HTAM) structures are disclosed. In one embodiment, a sacrificial dielectric is formed to provide a negative mask on which to pattern a conductive trace using HTAM. In another embodiment, a permanent dielectric is patterned using a processing such as laser project patterning. A conductive trace can then be patterned using HTAM. In yet another embodiment, conductive traces with tapered sidewalls can be patterned, and then a buffer layer and HTAM layer can be deposited on top.
    Type: Application
    Filed: September 24, 2021
    Publication date: March 30, 2023
    Applicant: Intel Corporation
    Inventors: Yoshihiro Tomita, Aleksandar Aleksov, Feras Eid, Adel Elsherbini, Wenhao Li, Stephen Morein