Patents by Inventor Francis S. Collins

Francis S. Collins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11802283
    Abstract: Provided are LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: October 31, 2023
    Assignees: Sarepta Therapeutics, Inc., The United States of America, as rep. by the Secretary, Dept. of Health and Human Services, The Progeria Research Foundation
    Inventors: Michael R. Erdos, Francis S. Collins, Kan Cao, Ryszard Kole, Richard Keith Bestwick, Leslie B. Gordon
  • Publication number: 20210010001
    Abstract: Provided are LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Application
    Filed: September 17, 2020
    Publication date: January 14, 2021
    Applicants: Sarepta Therapeutics, Inc., The Progeria Research Foundation, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPT. OF HEALTH AND HUMAN SERVICES, University of Maryland, The Progeria Research Foundation
    Inventors: Michael R. Erdos, Francis S. Collins, Kan Cao, Ryszard Kole, Richard Keith Bestwick, Leslie B. Gordon
  • Patent number: 10822608
    Abstract: Provided are LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: November 3, 2020
    Assignees: Sarepta Therapeutics, Inc., THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPT. OF HEALTH AND HUMAN SERVICES, University of Maryland, The Progeria Research Foundation
    Inventors: Michael R. Erdos, Francis S. Collins, Kan Cao, Ryszard Kole, Richard Keith Bestwick, Leslie B. Gordon
  • Patent number: 10398721
    Abstract: Provided are methods of treatment in subjects having progeroid diseases and related conditions which rely upon LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 3, 2019
    Assignees: SAREPTA THERAPEUTICS, INC., THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES, UNIVERSITY OF MARYLAND, PROGERIA RESEARCH FOUNDATION, INC.
    Inventors: Ryszard Kole, Francis S. Collins, Michael R. Erdos, Kan Cao, Leslie B. Gordon
  • Publication number: 20190127735
    Abstract: Provided are LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Application
    Filed: April 28, 2017
    Publication date: May 2, 2019
    Applicants: Sarepta Therapeutics, Inc., THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, DEPT. OF HEALTH AND HUMAN SERVICES, UNIVERSITY OF MARYLAND
    Inventors: Michael R. Erdos, Francis S. Collins, Kan Cao, Ryszard Kole, Richard Keith Bestwick, Leslie B. Gordon
  • Publication number: 20180271893
    Abstract: Provided are methods of treatment in subjects having progeroid diseases and related conditions which rely upon LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Application
    Filed: October 6, 2017
    Publication date: September 27, 2018
    Inventors: RYSZARD KOLE, Francis S. Collins, Michael R. Erdos, Kan Cao
  • Patent number: 9833468
    Abstract: Provided are methods of treatment in subjects having progeroid diseases and related conditions which rely upon LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 5, 2017
    Assignees: Sarepta Therapeutics, Inc., The United States of America, as represneted by the Secretary, Dept. of Health and Human Services, University of Maryland
    Inventors: Ryszard Kole, Francis S. Collins, Michael R. Erdos, Kan Cao
  • Publication number: 20170051278
    Abstract: Provided are methods of treatment in subjects having progeroid diseases and related conditions which rely upon LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Application
    Filed: March 29, 2016
    Publication date: February 23, 2017
    Inventors: Ryszard Kole, Francis S. Collins, Michael R. Erdos, Kan Cao
  • Patent number: 9326992
    Abstract: Provided are methods of treatment in subjects having progeroid diseases and related conditions which rely upon LMNA-targeted antisense oligonucleotides for reducing expression of one or more aberrantly spliced LMNA mRNA isoforms that encode progerin.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: May 3, 2016
    Assignees: Sarepta Therapeutics, Inc., The United States of America, as represented by the Secretary, Department of Health and Human Services, University of Maryland
    Inventors: Ryszard Kole, Francis S. Collins, Michael R. Erdos, Kan Cao
  • Publication number: 20160002307
    Abstract: Disclosed herein are point mutations in the LMNA gene that cause HGPS. These mutations activate a cryptic splice site within the LMNA gene, which leads to deletion of part of exon 11 and generation of a mutant Lamin A protein product that is 50 amino acids shorter than the normal protein. In addition to the novel Lamin A variant protein and nucleic acids encoding this variant, methods of using these molecules in detecting biological conditions associated with a LMNA mutation in a subject (e.g., HGPS, arteriosclerosis, and other age-related diseases), methods of treating such conditions, methods of selecting treatments, methods of screening for compounds that influence Lamin A activity, and methods of influencing the expression of LMNA or LMNA variants are also described.
    Type: Application
    Filed: July 14, 2015
    Publication date: January 7, 2016
    Inventors: B. Maria H. Eriksson, Francis S. Collins, Leslie B. Gordon, William Ted Brown
  • Patent number: 9115400
    Abstract: Disclosed herein are point mutations in the LMNA gene that cause HGPS. These mutations activate a cryptic splice site within the LMNA gene, which leads to deletion of part of exon 11 and generation of a mutant Lamin A protein product that is 50 amino acids shorter than the normal protein. In addition to the novel Lamin A variant protein and nucleic acids encoding this variant, methods of using these molecules in detecting biological conditions associated with a LMNA mutation in a subject (e.g., HGPS, arteriosclerosis, and other age-related diseases), methods of treating such conditions, methods of selecting treatments, methods of screening for compounds that influence Lamin A activity, and methods of influencing the expression of LMNA or LMNA variants are also described.
    Type: Grant
    Filed: September 12, 2013
    Date of Patent: August 25, 2015
    Assignees: The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services, Research Foundation for Mental Hygiene, Inc., The Progeria Research Foundation, Inc.
    Inventors: B. Maria H. Eriksson, Francis S. Collins, Leslie B. Gordon, William Ted Brown
  • Publication number: 20150018381
    Abstract: Although it can be farnesylated, the mutant lamin A protein expressed in Hutchinson Gilford Progeria Syndrome (HGPS) cannot be defarnesylated because the characteristic mutation causes deletion of a cleavage site necessary for binding the protease ZMPSTE24 and effecting defarnesylation. The result is an aberrant farnesylated protein (called “progerin”) that alters normal lamin A function as a dominant negative, as well as assuming its own aberrant function through its association with the nuclear membrane. The retention of farnesylation, and potentially other abnormal properties of progerin and other abnormal lamin gene protein products, produces disease. Farnesyltransferase inhibitors (FTIs) (both direct effectors and indirect inhibitors) will inhibit the formation of progerin, cause a decrease in lamin A protein, and/or an increase prelamin A protein. Decreasing the amount of aberrant protein improves cellular effects caused by and progerin expression.
    Type: Application
    Filed: July 21, 2014
    Publication date: January 15, 2015
    Inventors: Leslie B. GORDON, Francis S. COLLINS, Thomas GLOVER, Michael W. GLYNN, Brian C. CAPELL, Adrienne D. COX, Channing J. DER
  • Patent number: 8828356
    Abstract: Although it can be farnesylated, the mutant lamin A protein expressed in Hutchinson Gilford Progeria Syndrome (HGPS) cannot be defarnesylated because the characteristic mutation causes deletion of a cleavage site necessary for binding the protease ZMPSTE24 and effecting defarnesylation. The result is an aberrant farnesylated protein (called “progerin”) that alters normal lamin A function as a dominant negative, as well as assuming its own aberrant function through its association with the nuclear membrane. The retention of farnesylation, and potentially other abnormal properties of progerin and other abnormal lamin gene protein products, produces disease. Farnesyltransferase inhibitors (FTIs) (both direct effectors and indirect inhibitors) will inhibit the formation of progerin, cause a decrease in lamin A protein, and/or an increase prelamin A protein. Decreasing the amount of aberrant protein improves cellular effects caused by and progerin expression.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: September 9, 2014
    Assignees: Progeria Research Foundation, Inc., The United States of America as represented by the Secretary of the Department of Health and Human Services, The University of North Carolina at Chapel Hill, The Regents of the University of Michigan
    Inventors: Leslie B. Gordon, Francis S. Collins, Thomas Glover, Michael W. Glynn, Brian C. Capell, Adrienne D. Cox, Channing J. Der
  • Patent number: 8691501
    Abstract: Although it can be farnesylated, mutant lamin A expressed in Hutchinson Gilford Progeria Syndrome cannot be defarnesylated; the characteristic mutation causes deletion of a cleavage site necessary for binding the protease ZMPSTE24 and effecting defarnesylation. The result is an aberrant farnesylated protein (“progerin”) that alters normal lamin A function as a dominant negative, and assumes its own aberrant function through its association with the nuclear membrane. Retention of farnesylation, and potentially other abnormal properties of progerin and other abnormal lamin gene protein products, produces disease. Farnesyltransferase inhibitors (FTIs) will inhibit formation of progerin, cause a decrease in lamin A protein, and/or an increase prelamin A protein. Decreasing the amount of aberrant protein improves cellular effects caused by and progerin expression. Similarly, treatment with FTIs should improve disease status in progeria and other laminopathies.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: April 8, 2014
    Assignees: Progeria Research Foundation, Inc., The United States of America as represented by the Secretary of the Department of Health and Human Services, The Universitry of North Carolina at Chapel Hill, The Regents of the University of Michigan
    Inventors: Leslie B. Gordon, Francis S. Collins, Thomas Glover, Michael W. Glynn, Brian C. Capell, Adrienne D. Cox, Channing J. Der
  • Publication number: 20140072973
    Abstract: Disclosed herein are point mutations in the LMNA gene that cause HGPS. These mutations activate a cryptic splice site within the LMNA gene, which leads to deletion of part of exon 11 and generation of a mutant Lamin A protein product that is 50 amino acids shorter than the normal protein. In addition to the novel Lamin A variant protein and nucleic acids encoding this variant, methods of using these molecules in detecting biological conditions associated with a LMNA mutation in a subject (e.g., HGPS, arteriosclerosis, and other age-related diseases), methods of treating such conditions, methods of selecting treatments, methods of screening for compounds that influence Lamin A activity, and methods of influencing the expression of LMNA or LMNA variants are also described.
    Type: Application
    Filed: September 12, 2013
    Publication date: March 13, 2014
    Inventors: B. Maria H. Eriksson, Francis S. Collins, Leslie B. Gordon, William Ted Brown
  • Patent number: 8535884
    Abstract: Disclosed herein are point mutations in the LMNA gene that cause HGPS. These mutations activate a cryptic splice site within the LMNA gene, which leads to deletion of part of exon 11 and generation of a mutant Lamin A protein product that is 50 amino acids shorter than the normal protein. In addition to the novel Lamin A variant protein and nucleic acids encoding this variant, methods of using these molecules in detecting biological conditions associated with a LMNA mutation in a subject (e.g., HGPS, arteriosclerosis, and other age-related diseases), are also described. Oligonucleotides and other compounds for use in examples of the described methods are also provided, as are protein-specific binding agents, such as antibodies, that bind specifically to at least one epitope of a Lamin A variant protein preferentially compared to wildtype Lamin A, and methods of using such antibodies in diagnosis, treatment, and screening.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: September 17, 2013
    Assignees: The United States of America as represented by the Secretary of the Department of Health and Human Services, Research Foundation for Mental Hygiene, Inc., The Progeria Research Foundation, Inc.
    Inventors: B. Maria H. Eriksson, Francis S. Collins, Leslie B. Gordon, W. Ted Brown
  • Publication number: 20120329066
    Abstract: Although it can be farnesylated, mutant lamin A expressed in Hutchinson Gilford Progeria Syndrome cannot be defarnesylated; the characteristic mutation causes deletion of a cleavage site necessary for binding the protease ZMPSTE24 and effecting defarnesylation. The result is an aberrant farnesylated protein (“progerin”) that alters normal lamin A function as a dominant negative, and assumes its own aberrant function through its association with the nuclear membrane. Retention of farnesylation, and potentially other abnormal properties of progerin and other abnormal lamin gene protein products, produces disease. Farnesyltransferase inhibitors (FTIs) will inhibit formation of progerin, cause a decrease in lamin A protein, and/or an increase prelamin A protein. Decreasing the amount of aberrant protein improves cellular effects caused by and progerin expression. Similarly, treatment with FTIs should improve disease status in progeria and other laminopathies.
    Type: Application
    Filed: August 6, 2012
    Publication date: December 27, 2012
    Inventors: Leslie B. Gordon, Francis S. Collins, Thomas Glover, Michael W. Glynn, Brian C. Capell, Adrienne D. Cox, Channing J. Der
  • Patent number: 8257915
    Abstract: Although it can be farnesylated, the mutant lamin A protein expressed in Hutchinson Gilford Progeria Syndrome (HGPS) cannot be defarnesylated because the characteristic mutation causes deletion of a cleavage site necessary for binding the protease ZMPSTE24 and effecting defarnesylation. The result is an aberrant farnesylated protein (called “progerin”) that alters normal lamin A function as a dominant negative, as well as assuming its own aberrant function through its association with the nuclear membrane. The retention of farnesylation, and potentially other abnormal properties of progerin and other abnormal lamin gene protein products, produces disease. Farnesyltransferase inhibitors (FTIs) (both direct effectors and indirect inhibitors) will inhibit the formation of progerin, cause a decrease in lamin A protein, and/or an increase prelamin A protein. Decreasing the amount of aberrant protein improves cellular effects caused by and progerin expression.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: September 4, 2012
    Assignees: Progeria Research Foundation, Inc., The United States of America as represented by the Secretary of the Department of Health and Human Services, The University of North Carolina at Chapel Hill, The Regents of the University of Michigan
    Inventors: Leslie B. Gordon, Francis S. Collins, Thomas Glover, Michael W. Glynn, Brian C. Capell, Adrienne D. Cox, Channing J. Der
  • Publication number: 20120045762
    Abstract: Disclosed herein are point mutations in the LMNA gene that cause HGPS. These mutations activate a cryptic splice site within the LMNA gene, which leads to deletion of part of exon 11 and generation of a mutant Lamin A protein product that is 50 amino acids shorter than the normal protein. In addition to the novel Lamin A variant protein and nucleic acids encoding this variant, methods of using these molecules in detecting biological conditions associated with a LMNA mutation in a subject (e.g., HGPS, arteriosclerosis, and other age-related diseases), are also described. Oligonucleotides and other compounds for use in examples of the described methods are also provided, as are protein-specific binding agents, such as antibodies, that bind specifically to at least one epitope of a Lamin A variant protein preferentially compared to wildtype Lamin A, and methods of using such antibodies in diagnosis, treatment, and screening.
    Type: Application
    Filed: September 9, 2011
    Publication date: February 23, 2012
    Inventors: B. Maria H. Eriksson, Francis S. Collins, Leslie B. Gordon, W. Ted Brown
  • Patent number: 8034557
    Abstract: Disclosed herein are point mutations in the LMNA gene that cause HGPS. These mutations activate a cryptic splice site within the LMNA gene, which leads to deletion of part of exon 11 and generation of a mutant Lamin A protein product that is 50 amino acids shorter than the normal protein. In addition to the novel Lamin A variant protein and nucleic acids encoding this variant, methods of using these molecules in detecting biological conditions associated with a LMNA mutation in a subject (e.g., HGPS, arteriosclerosis, and other age-related diseases), methods of treating such conditions, methods of selecting treatments, methods of screening for compounds that influence Lamin A activity, and methods of influencing the expression of LMNA or LMNA variants are also described.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: October 11, 2011
    Assignees: The United States of America as represented by the Secretary of the Department of Health and Human Services, Research Foundation for Mental Hygiene, Inc., The Progeria Research Foundation, Inc.
    Inventors: B. Maria H. Eriksson, Francis S. Collins, Leslie B. Gordon, W. Ted Brown