Patents by Inventor Francois Guy Gerard Marie Vignon

Francois Guy Gerard Marie Vignon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11523802
    Abstract: Ultrasound imaging system, devices, and methods for minimizing grating lobe artefacts in an ultrasound image are provided. For example, an ultrasound imaging system can include an array of acoustic elements and a processor in communication with the array. The processor controls the array to activate a plurality of apertures and subapertures in a scan sequence, generate an image comprising a plurality of pixels, identify at least one subaperture of the plurality of subapertures corresponding to a reduced signal value for one or more pixels of the image, and generate a grating-lobe-minimized image based on the identified subapertures. The grating-lobe-minimized image can be output to a display or combined with the original ultrasound image to include image features lost or reduced in the grating-lobe-minimized image. The grating-lobe-minimized image advantageously reduces image artefacts and clutter to simplify ultrasound image analysis and diagnosis procedures.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: December 13, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, David Hope Simpson, Andrew Hancock, Seungsoo Kim, Jun Seob Shin, Jean-luc Francois-Marie Robert
  • Publication number: 20220370035
    Abstract: An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
    Type: Application
    Filed: August 5, 2022
    Publication date: November 24, 2022
    Inventors: Kunal VAIDYA, Ramon Quido ERKAMP, Shyam BHARAT, Ameet Kumar JAIN, Douglas Allen STANTON, Francois Guy Gerard Marie VIGNON
  • Publication number: 20220361841
    Abstract: Systems, methods, and devices that perform flow scan sequences are provided. In one embodiment, an ultrasound imaging system includes an intraluminal catheter or guidewire, an annular array of acoustic elements positioned around a circumference of the catheter or guidewire, and a processor in communication with the annular array. The processor is configured to activate a first subaperture of the annular array at a first time, thereafter, activate a second interleaving subaperture, and activate the first subaperture again at a different, second time such that the scan sequence moves around the circumference of the catheter or guidewire. Temporal differences between the received ultrasound signals obtained by the first subaperture at the first and second times are determined to detect motion around the annular array. By interleaving subaperture firings, the total number of firings to form an image frame can be reduced.
    Type: Application
    Filed: July 25, 2022
    Publication date: November 17, 2022
    Inventors: Jun Seob SHIN, Francois Guy Gerard Marie VIGNON, David HOPE SIMPSON, Andrew HANCOCK, Sheng-Wen HUANG
  • Patent number: 11497563
    Abstract: A controller (240/340) for simultaneously tracking multiple interventional medical devices includes a memory (242/342) that stores instructions and a processor (241/341) that executes the instructions. When executed by the processor (241/341), the instructions cause the controller to execute a process that includes receiving timing information from a first signal emitted from an ultrasound probe (252/352) and reflective of timing when the ultrasound probe (252/352) transmits ultrasound beams to generate ultrasound imagery. The process executed by the controller also includes forwarding the timing information to be available for use by a first acquisition electronic component (232/332). The first acquisition electronic component (232/332) also receives sensor information from a first passive ultrasound sensor (S1) on a first interventional medical device (212/312).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ramon Quido Erkamp, Hendrik Roelof Stapert, Gunther Lamparter, Ameet Kumar Jain, Alvin Chen, Shyam Bharat, Kunal Vaidya, Francois Guy Gerard Marie Vignon
  • Publication number: 20220354465
    Abstract: Improved ultrasound imaging devices and methods of operating the devices that minimize grating lobe artifacts in an ultrasound image are provided. For example, an ultrasound imaging system analyzes the ultrasound data at different frequency bands and generates a grating-lobe-minimized image based on minimum signals identified for each pixel among the plurality of frequency ranges. In one embodiment, an ultrasound imaging system includes an ultrasound transducer array configured to obtain ultrasound data, and a processor in communication with the ultrasound transducer array. The processor is configured to receive the ultrasound data, generate an ultrasound image based on a first frequency range of the ultrasound data, generate a grating-lobe-minimized ultrasound image based on a plurality of second frequency ranges of the ultrasound data, combine the ultrasound image and the grating-lobe-minimized ultrasound image to generate a combined ultrasound image, and output the combined ultrasound image to a display.
    Type: Application
    Filed: July 19, 2022
    Publication date: November 10, 2022
    Inventors: Jun Seob SHIN, Seungsoo KIM, Francois Guy Gerard Marie VIGNON, David HOPE SIMPSON
  • Patent number: 11484294
    Abstract: Ultrasound imaging systems and methods for generated clutter-reduced images are provided. For example, an ultrasound imaging system can include an array of acoustic elements in communication with a processor. The processor is configured to activate the array to perform a scan sequence to obtain a plurality of signals, identify off-axis signals from the plurality of signals by comparing the right subaperture and the left subaperture, and create a clutter-reduced image based on the comparison. Because off-axis signals are more likely to create image clutter, reducing the influence of off-axis signals on the image can therefore improve the quality of the image. Accordingly, embodiments of the present disclosure provide systems, methods, and devices for generating ultrasound images that have reduced or minimized clutter, even for images obtained using arrays that do not satisfy the Nyquist criterion.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 1, 2022
    Inventors: Andrew Hancock, Yiqun Yang, David Hope Simpson, Francois Guy Gerard Marie Vignon, Jun Seob Shin
  • Patent number: 11439363
    Abstract: An apparatus for performing a medical procedure is disclosed. The apparatus includes a sensor adapted to convert an ultrasonic signal incident thereon into an electrical signal; and a wireless transceiver configured to receive the electrical signal from the sensor, and to transmit the electrical signal to a wireless receiver remotely located from the apparatus.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: September 13, 2022
    Assignee: KONINKLIJIKE PHILIPS N.V.
    Inventors: Kunal Vaidya, Ramon Quido Erkamp, Shyam Bharat, Ameet Kumar Jain, Douglas Allen Stanton, Francois Guy Gerard Marie Vignon
  • Patent number: 11435459
    Abstract: The invention provides a method for generating a filtered ultrasound image. The method begins by obtaining channel data. First and second apodization functions are applied to the channel data to generate first (610) and second (620) image data, respectively. A minimization function is then applied to the first (610) and second (620) image data, which may then be used to generate third (630) image data. The filtered ultrasound image may then be generated based on the first (610) and third (630) image data.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: September 6, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jun Soeb Shin, Seungsoo Kim, Francois Guy Gerard Marie Vignon, Sheng-Wen Huang, Jean-Luc Francois-Marie Robert
  • Patent number: 11432804
    Abstract: The invention provides methods and systems for generating an ultrasound image. In a method, the generation of an ultrasound image comprises: obtaining channel data, the channel data defining a set of imaged points; for each imaged point: isolating the channel data; performing a spectral estimation on the isolated channel data; and selectively attenuating the spectral estimation channel data, thereby generating filtered channel data; and summing the filtered channel data, thereby forming a filtered ultrasound image. In some examples, the method comprises aperture extrapolation. The aperture extrapolation improves the lateral resolution of the ultrasound image. In other examples, the method comprises transmit extrapolation. The transmit extrapolation improves the contrast of the image. In addition, the transmit extrapolation improves the frame rate and reduces the motion artifacts in the ultrasound image. In further examples, the aperture and transmit extrapolations may be combined.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: September 6, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jun Seob Shin, Francois Guy Gerard Marie Vignon, Man Nguyen, Jean-Luc Francois-Marie Robert
  • Patent number: 11419581
    Abstract: An ultrasonic imaging system acquires frames of echo data at a high acquisition frame rate using a single mode of acquisition. The echo data is used by three image processors to produce an anatomical image, a mechanical function image, and a hemodynamic image from the same echo data. A display displays an anatomical image, a mechanical function image, and a hemodynamic image simultaneously.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: August 23, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, Sheng-Wen Huang, Oudom Somphone, Scott William Dianis, Lea Melki
  • Publication number: 20220249064
    Abstract: Systems and methods for reducing speckle while maintaining frame rate are disclosed. Multiple sub-images associated with different receive angles are acquired for a single transmit/receive event at an observation angle. The sub-images are compounded to generate a final image with reduced speckle. In some examples, multiple sub-images from multiple transmit/receive events are compounded to generate the final image. The observation angle and/or the receive angles may vary between transmit/receive events in some examples.
    Type: Application
    Filed: June 11, 2020
    Publication date: August 11, 2022
    Inventors: Sheng-Wen Huang, Changhong Hu, Francois Guy Gerard Marie Vignon, Jun Seob Shin, Unmin Bae, Neil Reid Owen
  • Patent number: 11408987
    Abstract: Aspects of the invention include ultrasound systems that suppress grating lobe artifacts arising due to high frequency operation of an array transducer probe which is operated at a frequency higher than its pitch limitation.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: August 9, 2022
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Francois Guy Gerard Marie Vignon, Jun Seob Shin, Seungsoo Kim, David Hope Simpson, Andrew Hancock
  • Publication number: 20220240901
    Abstract: A controller (250) for differentiating passive ultrasound sensors for interventional medical procedures includes a memory (291) and a processor (292). When executed by the processor (292), instructions from the memory (291) cause a system (200) that includes the controller (250) to implement a process that includes receiving first signals from a first passive ultrasound sensor (S1) and receiving second signals from a second passive ultrasound sensor (S2). The first signals and second signals are generated by the passive ultrasound sensors responsive to beams emitted from an ultrasound imaging probe (210). The process also includes identifying a characteristic of the first signals and the second signals. The characteristic includes shapes of the first signals and the second signals and/or times at which the first signals and the second signals are generated as the beams from the ultrasound imaging probe are received.
    Type: Application
    Filed: June 12, 2020
    Publication date: August 4, 2022
    Inventors: Ramon Quido ERKAMP, Alvin CHEN, Shyam BHARAT, Kunal VAIDYA, Ameet Kumar JAIN, Francois Guy Gerard Marie VIGNON
  • Publication number: 20220240780
    Abstract: An instrument for internal mapping includes a flexible elongated portion (702) and an expandable portion (710) coupled distally to the elongated portion, the expandable portion having one or more expandable loops. An array of sensors (706) and electrodes (708) is distributed on the expandable portion and is configured to concurrently register the instrument to real-time images of an anatomy using the sensors and measure electrical characteristics of the anatomy with the electrodes to generate an electro-physiology (EP) map having the anatomy and intensities of the electrical characteristics mapped together in the real-time images.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 4, 2022
    Inventors: Francois Guy Gerard Marie VIGNON, Ameet Kumar JAIN
  • Patent number: 11395638
    Abstract: Systems, methods, and devices that perform flow scan sequences are provided. In one embodiment, an ultrasound imaging system includes an intraluminal catheter or guidewire, an annular array of acoustic elements positioned around a circumference of the catheter or guidewire, and a processor in communication with the annular array. The processor is configured to activate a first subaperture of the annular array at a first time, thereafter, activate a second interleaving subaperture, and activate the first subaperture again at a different, second time such that the scan sequence moves around the circumference of the catheter or guidewire. Temporal differences between the received ultrasound signals obtained by the first subaperture at the first and second times are determined to detect motion around the annular array. By interleaving subaperture firings, the total number of firings to form an image frame can be reduced.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: July 26, 2022
    Assignee: PHILIPS IMAGE GUIDED THERAPY CORPORATION
    Inventors: Jun Seob Shin, Francois Guy Gerard Marie Vignon, David Hope Simpson, Andrew Hancock, Sheng-Wen Huang
  • Patent number: 11398023
    Abstract: A system according to the present disclosure may include a display unit, a processor communicatively coupled to the display unit and to an ultrasound imaging apparatus for generating an image from ultrasound data representative of a bodily structure and fluid flowing within the bodily structure. The processor may be configured to generate vector field data including axial and lateral (or transverse) velocity components of the fluid flowing within the bodily structure, calculate velocity profiles for a plurality of locations along a wall of the bodily structure based on the axial and lateral velocity components, generate wall shear stress (WSS) visualization data based, at least in part, on the velocity profiles, and cause the display unit to concurrently display the image including the bodily structure overlaid with the WSS visualization data.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: July 26, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Shiying Wang, Sheng-Wen Huang, Hua Xie, Francois Guy Gerard Marie Vignon, Keith William Johnson, Liang Zhang
  • Patent number: 11389138
    Abstract: Improved ultrasound imaging devices and methods of operating the devices that minimize grating lobe artifacts in an ultrasound image are provided. For example, an ultrasound imaging system analyzes the ultrasound data at different frequency bands and generates a grating-lobe-minimized image based on minimum signals identified for each pixel among the plurality of frequency ranges. In one embodiment, an ultrasound imaging system includes an ultrasound transducer array configured to obtain ultrasound data, and a processor in communication with the ultrasound transducer array. The processor is configured to receive the ultrasound data, generate an ultrasound image based on a first frequency range of the ultrasound data, generate a grating-lobe-minimized ultrasound image based on a plurality of second frequency ranges of the ultrasound data, combine the ultrasound image and the grating-lobe-minimized ultrasound image to generate a combined ultrasound image, and output the combined ultrasound image to a display.
    Type: Grant
    Filed: September 4, 2019
    Date of Patent: July 19, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jun Seob Shin, Seungsoo Kim, Francois Guy Gerard Marie Vignon, David Hope Simpson
  • Patent number: 11391828
    Abstract: A method is provided for filtering ultrasound image clutter. In the first stage of the method a data matrix is captured, wherein the data matrix contains information relating to the image, and singular value decomposition (SVD) is performed on the data matrix or a matrix derived from the data matrix. A spatial singular vector is then obtained from the SVD of the data matrix and a mean spatial frequency is estimated from them. A filtered data matrix is constructed based on the estimated mean spatial frequency and the SVD of the data matrix and a filtered image is constructed based on the filtered data matrix.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: July 19, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Francois Guy Gerard Marie Vignon, Jun Seob Shin, Sheng-Wen Huang, Jean-Luc Francois-Marie Robert
  • Patent number: 11372094
    Abstract: An ultrasonic diagnostic imaging system acquires received beams of echo signals produced in response to a plurality of transmit events. The received beams are combined with refocusing to account for differences in receive beam to transmit event locations. The delays and weights used in the refocusing are supplemented with delays and weights which correct for reverberation artifacts. The received echo signals are processed to detect the presence of reverberation artifacts and a simulated transmission of reverberation signal components to virtual point sources in the image field is calculated. This simulation produces the delays and weights used for reverberation signal compensation, or estimated reverberation signals which can be subtracted from received echo signals to reduce reverberation artifacts.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: June 28, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Faik Can Meral, Francois Guy Gerard Marie Vignon, Jean-Luc Francois-Marie Robert
  • Publication number: 20220192640
    Abstract: Systems and methods for triggering the acquisition of elastography measurements based on motion data are disclosed. Motion data may be acquired by Doppler mode imaging in some embodiments. The motion data may be used to generate a trigger signal. The trigger signal may be provided to a transmit controller. The transmit controller may cause an ultrasound transducer to acquire elastography measurements responsive to the trigger signal.
    Type: Application
    Filed: April 17, 2020
    Publication date: June 23, 2022
    Inventors: FRANCOIS GUY GERARD MARIE VIGNON, CAROLINA AMADOR CARRASCAL, SEUNGSOO KIM