Patents by Inventor Frank A. Alford

Frank A. Alford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120155501
    Abstract: A method of manufacturing an electrode, in which a solid metal material is extruded through a channel angular extrusion die to form the electrode. The solid metal material comprises copper and at least about 10 wt % zinc, and more particularly, between about 20 and about 40 wt % zinc. Prior to extrusion, the solid metal material may be formed by casting, hot forging, machining and/or hot isostatic pressure such that the solid metal material has dimensions corresponding to the CAE die. After extrusion, the solid metal material can be rolled and/or cut to a desired electrode shape.
    Type: Application
    Filed: December 16, 2010
    Publication date: June 21, 2012
    Applicant: Honeywell International Inc.
    Inventors: Stephane Ferrasse, Frank Alford, Kay Dean Bowles
  • Patent number: 7767043
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: August 3, 2010
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Patent number: 7691240
    Abstract: The invention includes backing plates having coolant deflectors with at least a portion of each of the deflectors being nonlinear. Projections projecting from the backing plate are configured to insert into openings within a sputtering target. The invention includes targets having at least one opening to receive a fastener extending into the target through a back surface. The invention includes a target assembly having projections projecting from the backing plate and insertable within openings within the target. The invention includes a target assembly having a plurality of coolant deflectors disposed between the target and the backing plate. A segment of each of the deflectors is nonlinear. The invention includes methods of cooling a target. Coolant deflectors are disposed within a gap between the target and a backing plate with coolant deflectors being nonlinear along at least a portion of their length.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: April 6, 2010
    Assignee: Honeywell International Inc.
    Inventors: Werner H. Hort, Scott R. Sayles, Vince Speziale, Stephane Ferrasse, Harold A. Detlaff, Stuart D. Wright, Frank Alford, Andrew N. A. Wragg
  • Publication number: 20100059147
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 11, 2010
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20090020192
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: September 22, 2008
    Publication date: January 22, 2009
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20070084527
    Abstract: The invention includes components comprising an alloy containing a base metal and less than or equal to 30% alloying elements. The material has a grain size of less than or equal to about 30 microns and an absence of voids and inclusions of a size greater than 1 micron. The components have a yield strength at least 50% greater than the identical alloy composition in the 0 temper condition. Where the material is heat treatable, the yield strength is at least 10% greater than the identical composition in the T6 temper condition. The invention includes a method of producing components by casting and initial treatment to form a billet. The billet is subjected to equal channel angular extrusion and subsequent annealing at a temperature of less than or equal to 0.85 times the minimum temperature for inducing growth of submicron grains to over 1 micron.
    Type: Application
    Filed: October 19, 2005
    Publication date: April 19, 2007
    Inventors: Stephane Ferrasse, Frank Alford, Janine Kardokus, Susan Strothers, Saket Chadda
  • Publication number: 20060260936
    Abstract: The invention includes backing plates having coolant deflectors with at least a portion of each of the deflectors being nonlinear. Projections projecting from the backing plate are configured to insert into openings within a sputtering target. The invention includes targets having at least one opening to receive a fastener extending into the target through a back surface. The invention includes a target assembly having projections projecting from the backing plate and insertable within openings within the target. The invention includes a target assembly having a plurality of coolant deflectors disposed between the target and the backing plate. A segment of each of the deflectors is nonlinear. The invention includes methods of cooling a target. Coolant deflectors are disposed within a gap between the target and a backing plate with coolant deflectors being nonlinear along at least a portion of their length.
    Type: Application
    Filed: May 1, 2006
    Publication date: November 23, 2006
    Inventors: Werner Hort, Scott Sayles, Vince Speziale, Stephane Ferrasse, Harold Detlaff, Stuart Wright, Frank Alford, Andrew Wragg
  • Publication number: 20060070876
    Abstract: The invention includes a target construction having a sputtering region and a flange region laterally outward relative to the sputtering region. The flange region has a front surface disposed on a front face of the construction and a back surface opposing the front surface. An o-ring groove is disposed within the flange region. The o-ring groove has a planar base surface which has a first width and has an orifice disposed along the front surface of the flange. The orifice has a second width as measured parallel relative to the base surface. The second width is greater than the first width. The flange surfaces can additionally be protected from rubbing by a layer of protective material.
    Type: Application
    Filed: September 23, 2005
    Publication date: April 6, 2006
    Inventors: Chi Wu, Stephane Ferrasse, Frank Alford, Susanne Grabmeier, Werner Hort, Jaeyeon Kim, Susan Strothers, Andrew Wragg, Robert Prater
  • Patent number: 7017382
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Grant
    Filed: July 11, 2002
    Date of Patent: March 28, 2006
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Patent number: 6946039
    Abstract: The invention includes a physical vapor deposition target composed of a face centered cubic unit cell metal or alloy and having a uniform grain size less than 30 microns, preferably less than 1 micron; and a uniform axial or planar <220> texture. Also described is a method for making sputtering targets. The method can comprise billet preparation; equal channel angular extrusion with a prescribed route and number of passes; and cross-rolling or forging subsequent to the equal channel angular extrusion.
    Type: Grant
    Filed: November 2, 2000
    Date of Patent: September 20, 2005
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Stephane Ferrasse, Frank Alford
  • Patent number: 6908517
    Abstract: The invention includes a physical vapor deposition target composed of a face centered cubic unit cell metal or alloy and having a uniform grain size less than 30 microns, preferably less than 1 micron; and a uniform axial or planar <220> texture. Also described is a method for making sputtering targets. The method can comprise billet preparation; equal channel angular extrusion with a prescribed route and number of passes; and cross-rolling or forging subsequent to the equal channel angular extrusion.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: June 21, 2005
    Assignee: Honeywell International Inc.
    Inventors: Vladimir M. Segal, Stephane Ferrasse, Frank Alford
  • Publication number: 20040256218
    Abstract: The invention includes methods of forming a barrier layer. Material is ablated from an ECAE target to form a layer having a thickness variance of less than or equal to 1% of 1-sigma across a substrate surface. The invention includes a method of forming a tunnel junction. A thin film is formed between first and second magnetic layers. The thin film, the first magnetic layer, and/or the second magnetic layer are formed by ablating material from an ECAE target to provide improved layer thickness uniformity relative to corresponding layers formed utilizing non-ECAE targets. The invention includes a physical vapor deposition target and a thin film formed using the target. The target contains an alloy of aluminum and at least one alloying element selected from Ga, Zr and In. The resulting film has a thickness variance across the thin film of less than 1.5% of 1-sigma.
    Type: Application
    Filed: May 12, 2003
    Publication date: December 23, 2004
    Inventors: Howard L. Glass, Stephane Ferrasse, Frank Alford
  • Publication number: 20040072009
    Abstract: The invention includes a copper-comprising sputtering target. The target is monolithic or bonded and contains at least 99.99% copper by weight and has an average grain size of from 1 micron to 50 microns. The copper-comprising target has a yield strength of greater than or equal to about 15 ksi and a Brinell hardness (HB) of greater than about 40. The invention includes copper alloy monolithic and bonded sputtering targets consisting essentially of less than or equal to about 99.99% copper by weight and a total amount of alloying element(s) of at least 100 ppm and less than 10% by weight. The targets have an average grain size of from less than 1 micron to 50 microns and have a grain size non-uniformity of less than about 15% standard deviation (1-sigma) throughout the target. The invention additionally includes methods of producing bonded and monolithic copper and copper alloy targets.
    Type: Application
    Filed: July 9, 2003
    Publication date: April 15, 2004
    Inventors: Vladimir M. Segal, Wuwen Yi, Stephane Ferrasse, Chi Tse Wu, Susan D. Strothers, Frank A. Alford, William B. Willett
  • Publication number: 20030052000
    Abstract: A material may include grains of sizes such that at least 99% of a measured area contains grains that exhibit grain areas less than 10 times an area of a mean grain size of the measured area. As examples, at least 99% of the measured area may contain grains with grain areas less than 8, 6, or 3 times the area of the mean grain size. The grains may also have a mean grain size of less than 3 times a minimum statically recrystallized grain size, for example, a mean grain size of less than about 50 microns, 10 microns, or 1 micron. The material may be comprised by a sputtering target and a thin film may be deposited on a substrate from such a sputtering target. A micro-arc reduction method may include sputtering a film from a sputtering target comprising grains of sizes as described. A sputtering target forming method may include deforming a sputtering material. After the deforming, the sputtering material may be shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: August 20, 2002
    Publication date: March 20, 2003
    Inventors: Vladimir Segal, Michael E. Thomas, Jianxing Li, Stephane Ferrasse, Frank Alford, Tim Scott, Stephen Turner
  • Publication number: 20020174917
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: July 11, 2002
    Publication date: November 28, 2002
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Publication number: 20020174916
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: July 11, 2002
    Publication date: November 28, 2002
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Publication number: 20010047838
    Abstract: The invention includes a method of forming an aluminum-comprising physical vapor deposition target. An aluminum-comprising mass is deformed by equal channel angular extrusion. The mass is at least 99.99% aluminum and further comprises less than or equal to about 1,000 ppm of one or more dopant materials comprising elements selected from the group consisting of Ac, Ag, As, B, Ba, Be, Bi, C, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Ho, In, Ir, La, Lu, Mg, Mn, Mo, N, Nb, Nd, Ni, O, Os, P, Pb, Pd, Pm, Po, Pr, Pt, Pu, Ra, Rf, Rh, Ru, S, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn and Zr. After the aluminum-comprising mass is deformed, the mass is shaped into at least a portion of a sputtering target.
    Type: Application
    Filed: February 13, 2001
    Publication date: December 6, 2001
    Inventors: Vladimir M. Segal, Jianxing Li, Frank Alford, Stephane Ferrasse
  • Patent number: 4094320
    Abstract: An improved electrosurgical safety circuit where the currents in the active and patient leads are monitored, the monitored currents being respectively rectified and then subtracted from one another. Whenever the active current exceeds the patient or return current by an amount corresponding to a dynamically variable threshold, an appropriate measure is taken such as the sounding of an alarm and/or the de-energization of the electrosurgical generator. The dynamic threshold varies in accordance with the level of the signal applied to the patient and compensates for leakage current through stray capacitance from the active lead to ground.The patient lead is substantially grounded at radio frequencies through a frequency sensitive network. The frequency sensitive network may include a capacitor, the value of which is such as to provide the foregoing frequency response.
    Type: Grant
    Filed: September 9, 1976
    Date of Patent: June 13, 1978
    Assignee: Valleylab, Inc.
    Inventors: David W. Newton, Frank A. Alford