Patents by Inventor Frank G. Willard

Frank G. Willard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200084414
    Abstract: Systems and methods are disclosed including a moving platform system suitable for mounting and use on a moving platform for communicating in real-time, comprising: a position system monitoring location of the moving platform and generating a sequence of time-based position data; a non-line of sight communication system; a high-speed line of sight communication system; and a computer system monitoring an availability of the non-line of sight communication system and the high-speed line of sight communication system and initiating connections when the non-line of sight communication system and the high-speed line of sight communication system are available, and receiving the sequence of time-based position data and transmitting the sequence of time-based position data via the at least one of the currently available non-line of sight communication system and the high-speed line of sight communication system.
    Type: Application
    Filed: October 17, 2019
    Publication date: March 12, 2020
    Inventors: Frank D. Giuffrida, Mark A. Winkelbauer, Charles Mondello, Robert S. Bradacs, Craig D. Woodward, Stephen L. Schultz, Scott D. Lawrence, Matt Kusak, Kevin G. Willard
  • Patent number: 10455197
    Abstract: The present disclosure describes a method for transmitting sensor data and positional data for geo-referencing oblique images from a moving platform to a ground station system in real-time. The method involves the aid of a moving platform system to capture sensor data and positional data for the sensor data, save the sensor data and positional data to one or more directories of one or more computer readable medium, monitor the one or more directories of the one or more computer readable medium for sensor data and positional data, and transmit the sensor data and positional data from the moving platform system to the ground station system over a wireless communication link responsive to the sensor data and positional data being detected as within the one or more directories.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: October 22, 2019
    Assignee: Pictometry International Corp.
    Inventors: Frank D. Giuffrida, Mark A. Winkelbauer, Charles Mondello, Robert S. Bradacs, Craig D. Woodward, Stephen L. Schultz, Scott D. Lawrence, Matt Kusak, Kevin G. Willard
  • Patent number: 7122986
    Abstract: A motor and a rotary potentiometer, or other position sensor, running on the motor shaft are mounted in a first enclosure with an output shaft for driving a power switch open or closed. A part of the system outside the first enclosure makes use of a motor position signal from the rotary potentiometer that is processed by a microcontroller that a worker can interact with at a switch panel to set and adjust motor travel limits without needing access into the motor enclosure. The first enclosure and its components can be used for various applications, including those for either underground or pad-mounted switches, which for the latter case can have the first enclosure inside a second enclosure on a pad, and the second enclosure also contains other power and control elements of the system. A portable unit with the switch panel for travel limits can be provided.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: October 17, 2006
    Assignee: Cleaveland/Price Inc.
    Inventors: Frank G. Willard, Joseph K. Andreyo, Angelo Rometo, John R. Klinvex
  • Patent number: 6075688
    Abstract: A motor operator with a continuity sensor has a test current injector and a voltage sensor arranged to determine if a loss of AC voltage is due to a discontinuity, such as a blown fuse, in the circuit of a transformer powering the motor operator rather than a loss of voltage from an AC power line. A line voltage detector, such as a resistive or capacitive voltage divider, can also be used with a continuity sensor to distinguish between a discontinuity in the voltage detector and a loss of line voltage. Based on the cause determined by the continuity sensor, signals are generated either to motor operate a disconnect switch or not to.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: June 13, 2000
    Assignee: Cleaveland/Price Inc.
    Inventors: Frank G. Willard, John R. Klinvex
  • Patent number: 5334919
    Abstract: Motor control system for reversible series DC electric motor having improved dynamic braking performance for smoothly, rapidly, and consistently stopping the motor armature rotation so that any operated devices are similarly stopped at a predetermined location. The control system uses a bridge conformed like a full-wave rectifier together with a series of switches having open and closed positions to control the direction of current through the armature. The current through the motor field winding is always in the same direction. Provision is made to insure operation of a complete cycle once the system is initially energized and the switches which control the direction of current through the armature are protected from arcing upon opening.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: August 2, 1994
    Assignee: Cleaveland/Price Inc.
    Inventor: Frank G. Willard
  • Patent number: 5311108
    Abstract: Motor control system for unidirectional series DC electric motor having improved dynamic braking performance for smoothly, rapidly and predictably stopping the motor armature so that any operated devices are similarly stopped at a predetermined location. The control system uses a bridge conformed like a full-wave rectifier together with a pair of switches having open and closed positions to control the direction of current through the armature. The current through the motor field winding is always in the same direction. The control switches are protected against arcing when breaking an inductive load.
    Type: Grant
    Filed: June 11, 1993
    Date of Patent: May 10, 1994
    Assignee: Cleaveland/Price, Inc.
    Inventor: Frank G. Willard
  • Patent number: 3978454
    Abstract: A programmable sequence controller for controlling a machine or process operation including a main low-security programmed sequencer and a high-security programmed sequencer through which selected outputs from the main sequencer must pass before being allowed to control the machine or process operation. This high-security sequencer generates a sequence of steps which relate to machine or process commands under conditions critical to the operation of the machine or process and is controlled in a predetermined order. Any critical output requested by the main sequencer is caused to initiate sequencing by the high-security sequencer and is tested by the high-security sequencer as to the propriety of the generation of a permitted output to the machine or process. The high-security sequencer in this manner effects an improved interlocking between the various critical output commands and actual operative conditions.
    Type: Grant
    Filed: June 20, 1974
    Date of Patent: August 31, 1976
    Assignee: Westinghouse Electric Corporation
    Inventor: Frank G. Willard