Patents by Inventor Frank Kehren

Frank Kehren has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220296194
    Abstract: A method of minimizing a patient's exposure to CT scan radiation during the mu-map generation process in a long axial field of view (FOV) PET scan includes performing a long axial FOV PET scan on a patient; performing one or multiple truncated FOV CT scan of a region in the patient's body in which the organs of interest lies; generating a truncated mu-map covering the truncated CT FOV; and generating a mu-map for the whole long axial FOV of the PET scan by extending the truncated mu-map generated from the truncated FOV CT scan by estimating the missing mu-map data using the PET data.
    Type: Application
    Filed: January 28, 2020
    Publication date: September 22, 2022
    Inventors: Girish Bal, Frank Kehren
  • Publication number: 20210405226
    Abstract: Systems and methods to partially-gate PET data include acquisition of first data describing a plurality of coincidences detected during a scan of an object, each of the plurality of coincidences associated with a coincidence time and a line of response, acquisition of a motion signal associated with motion of the object during the scan, determination of lines of response which are associated with a region of the object, determination of time periods of region motion based on the motion signal, modification of the first data to remove coincidences which are associated with the determined lines of response and which are associated with a coincidence time during a time period of region motion, reconstruction of an image of the object based on the modified first data, and display of the image.
    Type: Application
    Filed: May 25, 2021
    Publication date: December 30, 2021
    Inventors: Jicun Hu, Matthew Restivo, Inki Hong, Vladimir Panin, Frank Kehren, Michael E. Casey
  • Patent number: 11103199
    Abstract: A method of conducting a multi-pass dynamic positron emission tomography (PET) scans using continuous bed motion (CBM) mode is disclosed where the method involves acquiring PET sinogram data using CBM mode as the patient bed is moving in a first direction; acquiring PET sonogram data using CBM mode as the patient bed is moving in a second direction that is opposite from the first direction; and reconstructing 3-D PET image from the acquired PET sonogram data.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: August 31, 2021
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Jicun Hu, Vladimir Y. Panin, Anne M. Smith, William Curtis Howe, Vijay Shah, Frank Kehren, Michael E. Casey, Matthew Baker, Bernard Bendriem
  • Publication number: 20210106300
    Abstract: A method for performing a multi-bed scan includes receiving scanner-specific information including scanner sensitivity and receiving patient-specific information including attenuation. An attenuation-weighted sensitivity profile is calculated based on the scanner sensitivity and the attenuation. Individual bed scan times for each bed in a multi-bed study is calculated based on the attenuation-weighted sensitivity profile and the multi-bed scan is performed using the calculated individual bed scan times.
    Type: Application
    Filed: October 10, 2019
    Publication date: April 15, 2021
    Inventors: Girish Bal, Vladimir Y. Panin, Frank Kehren, Bernard Bendriem
  • Patent number: 10722189
    Abstract: A method of processing and reconstructing dynamic positron emission tomography (PET) sinogram data comprises: acquiring PET sinogram data using continuous bed motion having a varying velocity; recording a plurality of position-time coordinate pairs while acquiring the PET sinogram data; determining respective acquisition times of each of a plurality of slices of the image, based on the plurality of position-time coordinates; and reconstructing respective parametric images for each respective slice in the plurality of slices.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: July 28, 2020
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Jicun Hu, Vladimir Y. Panin, Anne M. Smith, William Curtis Howe, Vijay Shah, Frank Kehren, Michael E. Casey, Matthew Baker, Bernard Bendriem
  • Publication number: 20190059831
    Abstract: A method of processing and reconstructing dynamic positron emission tomography (PET) sinogram data comprises: acquiring PET sinogram data using continuous bed motion having a varying velocity; recording a plurality of position-time coordinate pairs while acquiring the PET sinogram data; determining respective acquisition times of each of a plurality of slices of the image, based on the plurality of position-time coordinates; and reconstructing respective parametric images for each respective slice in the plurality of slices.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Jicun Hu, Vladimir Y. Panin, Anne M. Smith, William Curtis Howe, Vijay Shah, Frank Kehren, Michael E. Casey, Matthew Baker, Bernard Bendriem
  • Publication number: 20180303438
    Abstract: A method of conducting a multi-pass dynamic positron emission tomography (PET) scans using continuous bed motion (CBM) mode is disclosed where the method involves acquiring PET sinogram data using CBM mode as the patient bed is moving in a first direction; acquiring PET sonogram data using CBM mode as the patient bed is moving in a second direction that is opposite from the first direction; and reconstructing 3-D PET image from the acquired PET sonogram data.
    Type: Application
    Filed: March 23, 2018
    Publication date: October 25, 2018
    Inventors: Jicun Hu, Vladimir Y. Panin, Anne M. Smith, William Curtis Howe, Vijay Shah, Frank Kehren, Michael E. Casey, Matthew Baker, Bernard Bendriem
  • Patent number: 9730664
    Abstract: A set of first modality data (e.g., MR or CT) is provided. The set of first modality data comprises a plurality of mu-maps, a plurality of motion vectors and a plurality of gated data. Each of the mu-maps corresponds to one of the beds. A set of second modality data (e.g., PET/SPECT) is provided. The set of second modality data comprises a plurality of frames for each of the beds. Each of the plurality of frames is warped by one or more motion vectors of the plurality of motion vectors. A single-bed image is generated for each bed by summing the frames corresponding to the bed. A whole body image is generated by summing the single-bed images for each of the beds.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: August 15, 2017
    Inventors: Girish Bal, Matthias Fenchel, William Curtis Howe, Frank Kehren
  • Patent number: 9262844
    Abstract: Methods and systems for processing data for medical imaging are disclosed. The method includes obtaining a set of continuous bed motion (CBM) data from a first imaging modality. The set of CBM data includes a plurality of gating signals. A CBM normalization matrix is calculated. The CBM normalization matrix calculation includes the plurality of gating signals. An image is reconstructed from the CBM data and the CBM normalization matrix. The first imaging modality can be a PET imaging device.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: February 16, 2016
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Jicun Hu, Vladimir Y. Panin, Frank Kehren, Michael E. Casey
  • Publication number: 20150302613
    Abstract: Methods and systems for processing data for medical imaging are disclosed. The method includes obtaining a set of continuous bed motion (CBM) data from a first imaging modality. The set of CBM data includes a plurality of gating signals. A CBM normalization matrix is calculated. The CBM normalization matrix calculation includes the plurality of gating signals. An image is reconstructed from the CBM data and the CBM normalization matrix. The first imaging modality can be a PET imaging device.
    Type: Application
    Filed: March 27, 2015
    Publication date: October 22, 2015
    Inventors: Jicun Hu, Vladimir Y. Panin, Frank Kehren, Michael E. Casey
  • Publication number: 20150289832
    Abstract: A set of first modality data (e.g., MR or CT) is provided. The set of first modality data comprises a plurality of mu-maps, a plurality of motion vectors and a plurality of gated data. Each of the mu-maps corresponds to one of the beds. A set of second modality data (e.g., PET/SPECT) is provided. The set of second modality data comprises a plurality of frames for each of the beds. Each of the plurality of frames is warped by one or more motion vectors of the plurality of motion vectors. A single-bed image is generated for each bed by summing the frames corresponding to the bed. A whole body image is generated by summing the single-bed images for each of the beds.
    Type: Application
    Filed: March 30, 2015
    Publication date: October 15, 2015
    Inventors: Girish Bal, Matthias Fenchel, William Curtis Howe, Frank Kehren
  • Patent number: 9053569
    Abstract: The DCC (Data Consistency Condition) algorithm is used in combination with MLAA (Maximum Likelihood reconstruction of Attenuation and Activity) to generate extended attenuation correction maps for nuclear medicine imaging studies. MLAA and DCC are complementary algorithms that can be used to determine the accuracy of the mu-map based on PET data. MLAA helps to estimate the mu-values based on the biodistribution of the tracer while DCC checks if the consistency conditions are met for a given mu-map. These methods are combined to get a better estimation of the mu-values. In gated MR/PET cardiac studies, the PET data is framed into multiple gates and a series of MR based mu-maps corresponding to each gate is generated. The PET data from all gates is combined. Once the extended mu-map is generated the central region is replaced with the MR based mu-map corresponding to that particular gate.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: June 9, 2015
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Girish Bal, Frank Kehren, Vladimir Y. Panin, Christian J. Michel, Johan Nuyts
  • Publication number: 20140056500
    Abstract: The DCC (Data Consistency Condition) algorithm is used in combination with MLAA (Maximum Likelihood reconstruction of Attenuation and Activity) to generate extended attenuation correction maps for nuclear medicine imaging studies. MLAA and DCC are complementary algorithms that can be used to determine the accuracy of the mu-map based on PET data. MLAA helps to estimate the mu-values based on the biodistribution of the tracer while DCC checks if the consistency conditions are met for a given mu-map. These methods are combined to get a better estimation of the mu-values. In gated MR/PET cardiac studies, the PET data is framed into multiple gates and a series of MR based mu-maps corresponding to each gate is generated. The PET data from all gates is combined. Once the extended mu-map is generated the central region is replaced with the MR based mu-map corresponding to that particular gate.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 27, 2014
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Girish Bal, Frank Kehren, Vladimir Y. Panin, Christian J. Michel, Johan Nuyts
  • Patent number: 7876941
    Abstract: A method and system for reconstructing PET image data from a cylindrical PET scanner by incorporation of axial system response. The method includes the steps of: assuming the decomposition of axial components into individual line-of-response (LOR) contributions, approximating each LOR spreading in image space as depth-independent, implementing each LOR response, combining the LORs to produce large span projection data, implementing the back projector as a transposed matrix, and assembling the LOR projections and spans for each azimuthal angle.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: January 25, 2011
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Vladimir Panin, Frank Kehren, Michael E. Casey
  • Patent number: 7856129
    Abstract: A method for interpolating at least one oblique line of response ray representing nuclear image projection data through a rectangular volume and a system for using the method. The method consists of steps of interpolating all the direct rays in a rectangular volume, making a projected ray by projecting the oblique ray onto a surface of the rectangular volume, matching the projected ray to a coinciding interpolated direct ray, shearing the rectangular volume to match the projected ray, and interpolating the oblique ray in the sheared volume.
    Type: Grant
    Filed: March 9, 2007
    Date of Patent: December 21, 2010
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Vladimir Panin, Frank Kehren, Christian J. Michel
  • Publication number: 20080219525
    Abstract: A method for interpolating at least one oblique line of response ray representing nuclear image projection data through a rectangular volume and a system for using the method. The method consists of steps of interpolating all the direct rays in a rectangular volume, making a projected ray by projecting the oblique ray onto a surface of the rectangular volume, matching the projected ray to a coinciding interpolated direct ray, shearing the rectangular volume to match the projected ray, and interpolating the oblique ray in the sheared volume.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Inventors: Vladimir Panin, Frank Kehren, Christian J. Michel
  • Publication number: 20080217540
    Abstract: A method and system for reconstructing PET image data from a cylindrical PET scanner by incorporation of axial system response. The method includes the steps of: assuming the decomposition of axial components into individual line-of-response (LOR) contributions, approximating each LOR spreading in image space as depth-independent, implementing each LOR response, combining the LORs to produce large span projection data, implementing the back projector as a transposed matrix, and assembling the LOR projections and spans for each azimuthal angle.
    Type: Application
    Filed: March 9, 2007
    Publication date: September 11, 2008
    Inventors: Vladimir Panin, Frank Kehren, Michael E. Casey