Patents by Inventor Frederick J. Leonberger

Frederick J. Leonberger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190170993
    Abstract: Described herein are methods and systems for the optical imaging of a physical specimen of interest that is in contact with, or in close proximity to, the backplane of a high refractive index solid-immersion lens (SIL), wherein the specimen comprises features of interest that act as a local high-refractive index regions. The SIL lens preferably comprises fiducial markers.
    Type: Application
    Filed: August 18, 2017
    Publication date: June 6, 2019
    Inventors: Zong-Long Liau, Frederick J. Leonberger
  • Publication number: 20190148913
    Abstract: A guide transition device including a light source designed to generate a light beam, a light input port on a first plane and coupled to receive the light beam from the light source, a light output port on a second plane different than the first plane, the light output port designed to couple a received light beam to output equipment and plane shifting apparatus coupled to receive the light beam from the light input port on the first plane and to shift or transfer the light beam to the second plane. The plane shifting apparatus including one or more digital gratings each designed to deflect the light beam approximately ninety degrees. The plane shifting apparatus is coupled to transfer the light beam to the light output port on the second plane.
    Type: Application
    Filed: November 14, 2017
    Publication date: May 16, 2019
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Frederick J Leonberger
  • Publication number: 20190079243
    Abstract: A guide transition device including a light source designed to generate a light beam, a light input port on a first plane and coupled to receive the light beam from the light source, a light output port on a second plane different than the first plane, the light output port designed to couple a received light beam to output equipment and plane shifting apparatus coupled to receive the light beam from the light input port on the first plane and to shift or transfer the light beam to the second plane. The plane shifting apparatus is coupled to transfer the light beam to the light output port on the second plane.
    Type: Application
    Filed: September 14, 2017
    Publication date: March 14, 2019
    Applicant: Lightwave Logic Inc.
    Inventors: Michael Lebby, Frederick J Leonberger, Richard Becker
  • Publication number: 20190064436
    Abstract: A monolithic photonic integrated circuit includes a platform, a monolithic laser formed in/on the platform, and an electro-optic polymer modulator monolithically built onto the platform and optically coupled to the monolithic laser. The polymer modulator is optically coupled to the monolithic laser by waveguides including electro-optic polymer waveguides. The electro-optic polymer modulator and the electro-optic polymer waveguides including an electro-optic polymer core and top and bottom electro-optic polymer cladding layers. The electro-optic polymer core having an electro-optic coefficient (r33) greater than 250 pm/v, and a Tg 150° C. to >200° C., and the top and bottom electro-optic polymer cladding layers having a Tg approximately the same as the Tg of the electro-optic polymer core.
    Type: Application
    Filed: August 31, 2017
    Publication date: February 28, 2019
    Inventors: Frederick J Leonberger, Michael Lebby, Richard Becker
  • Patent number: 10215998
    Abstract: An optical imaging system with microlens array with integral structure includes a microlens array having a back surface for depositing sample material to be imaged and one or more microlenses on a front surface. At least one of the one or more microlenses are aligned to the deposited sample material. A plate is attached to the microlens array. A microscope objective is positioned proximate to the plurality of microlenses.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: February 26, 2019
    Assignee: Sure Optics, Inc.
    Inventors: Frederick J. Leonberger, Jeffrey Farmer, Zong-Long Liau
  • Publication number: 20180259798
    Abstract: A direct-drive polymer modulator including a platform, a multilayer waveguide formed in/on the platform, the waveguide including a bottom cladding layer, an electro-optic polymer core and a top cladding layer, and at least a portion of the waveguide forming a direct-drive polymer modulator.
    Type: Application
    Filed: February 19, 2018
    Publication date: September 13, 2018
    Applicant: Lightwave Logic Inc.
    Inventors: Richard Becker, Frederick J. Leonberger, Michael Lebby
  • Publication number: 20160320628
    Abstract: An optical imaging system with microlens array with integral structure includes a microlens array having a back surface for depositing sample material to be imaged and one or more microlenses on a front surface. At least one of the one or more microlenses are aligned to the deposited sample material. A plate is attached to the microlens array. A microscope objective is positioned proximate to the plurality of microlenses.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Applicant: SuRe Optics, Inc.
    Inventors: Frederick J. Leonberger, Jeffrey Farmer, Zong-Long Liau
  • Publication number: 20160320629
    Abstract: A fluidic super resolution optical imaging system includes a microlens array chip comprising at least one lenslet on a first surface. An objective lens is positioned proximate to the at least one lenslet. A fluid jet is positioned proximate to a second surface of the microlens array that flows at least one of a fluid comprising a material to be imaged or a material that enables imaging of a second material through a focal area of the objective lens and the at least one lenslet.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Applicant: SuRe Optics, Inc.
    Inventors: Frederick J. Leonberger, Jeffrey Farmer, Zong-Long Liau
  • Patent number: 5223911
    Abstract: A FOG system with a high polarization extinction ratio includes an integrated optic circuit (IOC) having a waveguide array fabricated by a proton exchange (PE) process, the IOC being operatively connected for providing single mode, single polarization filtering of incident light guided from the FOG light source to the sensing loop and of the interference signal guided from the sensing loop to the detector.
    Type: Grant
    Filed: October 28, 1992
    Date of Patent: June 29, 1993
    Assignee: United Technologies Corporation
    Inventors: Paul G. Suchoski, Jr., Talal K. Findakly, Carl M. Ferrar, Frederick J. Leonberger
  • Patent number: 5159420
    Abstract: A one-dimensional or two-dimensional transmission mode spatial light modulator (SLM) includes two different mediums, one medium being a semiconductor comprising one or more heterojunction acoustic charge transport (HACT) channels 28 with surrounding layers 26, 30 vertically adjacent to a multiple quantum well (MQW) region 22, and the other being a transparent piezoelectric insulating substrate 10 thick enough to allow a surface acoustic wave (SAW) 13 to propagate therein. The SAW 13 is launched in the substrate 10 by a transducer 12 and generates electric fields which propagate the charge along the HACT channel 28 in the semiconductor medium 18. Electrodes 32, 34, 36 carry charge to and from the HACT channel 28, and light 40 is applied to a surface 44 perpendicular to the MQW region 22.
    Type: Grant
    Filed: October 15, 1991
    Date of Patent: October 27, 1992
    Assignee: United Technologies Corporation
    Inventors: Thomas W. Grudkowski, Glen W. Drake, Frederick J. Leonberger, Robert N. Sacks, William J. Tanski
  • Patent number: 5077816
    Abstract: A narrowband laser source includes an optical fiber section including a core centered on a longitudinal axis and a cladding surounding the core, and having a grating region embedded in the core. The grating region includes a multitude of Bragg grating elements extending with a substantially equal longitudinal spacing substantially normal to the longitudinal axis for the grating region to significantly reduce the amount of light passing therethrough when the frequency of such light is in a predetermined narrow range around and including a predetermined center frequency, to an extent proportionate to the deviation of such frequency from the center frequency. A portion of the light emitted by a laser at a frequency dependent on the amount of electric energy applied to the laser is supplied into the core of the fiber section for propagation toward the grating region.
    Type: Grant
    Filed: December 16, 1989
    Date of Patent: December 31, 1991
    Assignee: United Technologies Corporation
    Inventors: Walter L. Glomb, Frederick J. Leonberger
  • Patent number: 4984861
    Abstract: A single polarization active IO device includes a crystalline material substrate having an IO circuit array comprising an optical waveguide array disposed on a major surface of the substrate by a two step proton exchange (TSPE) process, and including an electrode array disposed on the major surface in juxtaposed relation with the waveguide array to provide one or more active IO regions thereon.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: January 15, 1991
    Assignee: United Technologies Corporation
    Inventors: Paul G. Suchoski, Jr., Talal K. Findakly, Frederick J. Leonberger
  • Patent number: 4953935
    Abstract: An optical power star coupler includes a LiNbO.sub.3 or LiTaO.sub.3 substrate having a major surface for receiving a circuit array of one or more surface for splitters disposed thereon by a two step proton exchange (TSPE) process, in a geometric pattern to provide an N.times.M star coupler having high polarization extinction, uniform splitting ratio, and low loss.
    Type: Grant
    Filed: March 27, 1989
    Date of Patent: September 4, 1990
    Assignee: United Technologies Corporation
    Inventors: Paul G. Suchoski, Jr., Talal K. Findakly, Frederick J. Leonberger
  • Patent number: 4865427
    Abstract: Spatial light modulators which use a substrate having a buried channel charge-coupled device (CCD) formed therein, wherein the amount of charge in the charge storage wells associated with the electrodes of the CCD is controlled by an electrically or optically addressed data signal. The level of charge in such charge storage wells controls the electric field beneath the electrodes so that the intensity of electromagnetic energy (e.g., light) directed through The CCD is spatially modulated by the charge levels in the charge storage wells in accordance with the Franz-Keldysh electroabsorption effect.
    Type: Grant
    Filed: August 6, 1987
    Date of Patent: September 12, 1989
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert H. Kingston, Frederick J. Leonberger
  • Patent number: 4798437
    Abstract: Discrete segments of an analog optical wave signal are collected in individual waveguides of a waveguide array. In the waveguide array, the optical signal is processed to provide an analysis of the signal or to control the signal. The signal can be analyzed by Mach-Zehnder interferometers which can provide an indication of the distance of a subject from the array. By controlling the dielectric constants of the waveguides electronically, the array can serve as an aberration free focusing lens or as an aberration compensation lens. Rapid electronic control of the focal length of the lens makes the lens particularly applicable to automatic focusing systems, systems which view only objects within a selected range of distances from the array, and the compiling of in focus segments to form a wide depth of field image.
    Type: Grant
    Filed: September 9, 1986
    Date of Patent: January 17, 1989
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert H. Rediker, Frederick J. Leonberger, Darryl P. Greenwood
  • Patent number: 4696533
    Abstract: Spatial light modulators which use a substrate having a buried channel charge-coupled device (CCD) formed therein, wherein the amount of charge in the charge storage wells associated with the electrodes of the CCD is controlled by an electrically or optically addressed data signal. The level of charge in such charge storage wells controls the electric field beneath the electrodes so that the intensity of electromagnetic energy (e.g., light) directed through the CCD is spatially modulated by the charge levels in the charge storage wells in accordance with the Franz-Keldysh electroabsorption effect.
    Type: Grant
    Filed: January 12, 1981
    Date of Patent: September 29, 1987
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert H. Kingston, Frederick J. Leonberger
  • Patent number: 4525871
    Abstract: An electronic mixer is decribed which utilizes an optoelectronic switch formed from a semi-insulating substrate of indium phosphide doped with a deep level impurity and disposed intermediate a microstrip transmission line. One conductor of the transmission line has a small gap in its metallization. Upon illumination of the gap by laser pulses from a laser source which are absorbed near the semiconductor surface, a photo-generated electron-hole plasma forms thereby providing a conducting path across the gap. An RF signal to be mixed with a LO signal is coupled to one side of the switch. The LO signal controls the Laser source. The output of the switch is therefore the product of the RF and LO signal.
    Type: Grant
    Filed: February 3, 1982
    Date of Patent: June 25, 1985
    Assignee: Massachusetts Institute of Technology
    Inventors: Arthur G. Foyt, Frederick J. Leonberger, Richard C. Williamson
  • Patent number: 4518219
    Abstract: A three-dimensional optical waveguide is disclosed. This waveguide comprises a single crystal semiconductor layer grown upon an insulator which has an index of refraction lower than the semiconductor. The semiconductor layer has a thickness which provides confinement of light propagating in the semiconductor layer in the vertical direction. An effective larger index of refraction over a cross-sectional region of the semiconductor layer provides confinement of light in the lateral direction. This lateral confinement is achieved by side walls in the semiconductor layer which extend toward, but fall short of, the insulator layer.
    Type: Grant
    Filed: February 3, 1983
    Date of Patent: May 21, 1985
    Assignee: Massachusetts Institute of Technology
    Inventors: Frederick J. Leonberger, Ivars Melngailis, Carl O. Bozler, Robert W. McClelland
  • Patent number: 4505587
    Abstract: A high speed sampling technique is proposed using a cascade of optical waveguide interferometers driven by CW sinusoidal traveling or standing microwaves. Each interferometer multiplies the optical signal by a function closely approximated by cos.sup.4 .omega.t, where .omega. is the frequency of its microwave drive. A cascade of four interferometers with 2.6 V microwave drives at 10, 20, 40, and 80 GHz and a total length of 2 cm can sample an optical signal with 2 ps resolution and 50 ps between samples.
    Type: Grant
    Filed: August 14, 1981
    Date of Patent: March 19, 1985
    Assignee: Massachusetts Institute of Technology
    Inventors: Hermann A. Haus, Steven T. Kirsch, Frederick J. Leonberger
  • Patent number: 4420873
    Abstract: A method for fabricating three-dimensional optical waveguides is disclosed. In this method, a single crystal semiconductor layer is grown upon an insulator which has an index of refraction lower than the semiconductor. The semiconductor layer is deposited to a thickness which provides confinement of light propagating in the semiconductor layer in the vertical direction. An effective larger index of refraction over a cross-sectional region of the semiconductor layer is then formed to provide confinement of light in the lateral direction. In the preferred method, the growth of single crystal semiconductor upon the insulator is achieved by a vapor-phase lateral epitaxial overgrowth technique.Devices fabricated according to the method are also disclosed.
    Type: Grant
    Filed: January 25, 1980
    Date of Patent: December 20, 1983
    Assignee: Massachusetts Institute of Technology
    Inventors: Frederick J. Leonberger, Ivars Melngailis, Carl O. Bozler, Robert W. McClelland