Patents by Inventor Fu Chiung Chong

Fu Chiung Chong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8575954
    Abstract: Based upon a layout of a semiconductor wafer comprising a plurality of integrated circuits at pre-defined locations, each integrated circuit comprising a set of electrical connection pads, a probe chip contactor is established, having a unit standard cell on the probe side of the probe chip to correspond to each of the arranged integrated circuits. The unit standard cell is stepped and repeated for the probe side of the probe chip contactor, to establish a wafer scale standard cell layout. The opposite contact side of the probe chip contactor is connectable to a central structure, e.g. a Z-block or PC board, typically comprising a fixed array of vias with fixed X, Y, and Z locations. The routing of contact side of the probe chip contactor is preferably routed automatically, such as implemented on one or more computers, to provide electrical connections between the substrate through vias and the Z-block through vias.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 5, 2013
    Assignee: Advantest (Singapore) Pte Ltd
    Inventors: Fu Chiung Chong, William R. Bottoms, Erh-Kong Chieh, Nim Cho Lam
  • Publication number: 20120212248
    Abstract: Enhanced microfabricated spring contact structures and associated methods, e.g. such as for electrical contactors and interposers, comprise improvements to spring structures that extend from the substrate surface, and/or improvements to structures on or within the support substrate. Improved spring structures and processes comprise embodiments having selectively formed and etched, coated and/or plated regions, which are optionally further processed through planarization and/or annealment. Enhanced solder connections and associated processes provide a gap between substrates for componentry, and or improved manufacturing techniques using distributed spacers. Enhanced probe card assembly structures and processes provide improved planarization adjustment and thermal stability.
    Type: Application
    Filed: December 4, 2007
    Publication date: August 23, 2012
    Inventors: Fu Chiung Chong, W.R. Bottoms, Erh-Kong Chieh, Anna Litza, Douglas L. McKay, Roman L. Milter, Sha Li
  • Publication number: 20120023730
    Abstract: Enhanced microfabricated spring contact structures and associated methods, e.g. such as for electrical contactors and interposers, comprise improvements to spring structures that extend from the substrate surface, and/or improvements to structures on or within the support substrate. Improved spring structures and processes comprise embodiments having selectively formed and etched, coated and/or plated regions, which are optionally further processed through planarization and/or annealment. Enhanced solder connections and associated processes provide a gap between substrates for componentry, and or improved manufacturing techniques using distributed spacers. Enhanced probe card assembly structures and processes provide improved planarization adjustment and thermal stability.
    Type: Application
    Filed: October 5, 2011
    Publication date: February 2, 2012
    Inventors: Fu Chiung CHONG, W.R. BOTTOMS, Erh-Kong CHIEH, Anna LITZA, Douglas L. McKAY, Roman L. MILTER, Sha LI
  • Patent number: 7952373
    Abstract: Several embodiments of integrated circuit probe card assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: May 31, 2011
    Assignee: Verigy (Singapore) Pte. Ltd.
    Inventors: Sammy Mok, Fu Chiung Chong
  • Patent number: 7884634
    Abstract: An improved interconnection system and method is described, such as for connectors, socket assemblies and/or probe card systems. An exemplary system comprises a probe card interface assembly (PCIA) for establishing electrical connections to a semiconductor wafer mounted in a prober. The PCIA comprises a motherboard parallel to the semiconductor wafer having an upper surface and an opposing lower planar mounting surface, a reference plane defined by a least three points located between the lower surface of the motherboard and the wafer, at least one component located below the motherboard mounting surface, and a mechanism for adjusting the planarity of the reference plane with respect to the wafer. A probe chip having a plurality of spring probes extending there from is mountable and demountable from the PCIA, without the need for further planarity adjustment. The interconnection structures and methods preferably provide improved fabrication cycles.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: February 8, 2011
    Assignee: Verigy (Singapore) Pte, Ltd
    Inventors: Fu Chiung Chong, Andrew Kao, Douglas McKay, Anna Litza, Douglas Modlin, Sammy Mok, Nitin Parekh, Frank John Swiatowiec, Zhaohui Shan
  • Patent number: 7872482
    Abstract: An improved interconnection system and method is described, such as for connectors, socket assemblies and/or probe card systems. An exemplary system comprises a probe card interface assembly (PCIA) for establishing electrical connections to a semiconductor wafer mounted in a prober. The PCIA comprises a motherboard parallel to the semiconductor wafer having an upper surface and an opposing lower planar mounting surface, a reference plane defined by a least three points located between the lower surface of the motherboard and the wafer, at least one component located below the motherboard mounting surface, and a mechanism for adjusting the planarity of the reference plane with respect to the wafer. A probe chip having a plurality of spring probes extending there from is mountable and demountable from the PCIA, without the need for further planarity adjustment. The interconnection structures and methods preferably provide improved fabrication cycles.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: January 18, 2011
    Assignee: Verigy (Singapore) Pte. Ltd
    Inventors: Fu Chiung Chong, Andrew Kao, Douglas McKay, Anna Litza, Douglas Modlin, Sammy Mok, Nitin Parekh, Frank John Swiatowiec, Zhaohui Shan
  • Patent number: 7812626
    Abstract: An improved interconnection system is described, such as for electrical contactors and connectors, electronic device or module package assemblies, socket assemblies, and/or probe card assembly systems. An exemplary connector comprises a first connector structure comprising a contactor substrate having a contact surface and a bonding surface, and one or more electrically conductive micro-fabricated spring contacts extending from the probe surface, a second connector structure comprising at least one substrate and having a set of at least one electrically conductive contact pad located on a connector surface and corresponding to the set of spring contacts, and means for movably positioning and aligning the first connector structure and the second connector structure between at least a first position and a second position, such that in at least one position, at least one electrically conductive micro-fabricated spring contact is electrically connected to at least one electrically conductive contact pad.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: October 12, 2010
    Assignee: Verigy (Singapore) Pte. Ltd.
    Inventors: Wilmer R. Bottoms, Fu Chiung Chong, Sammy Mok, Douglas Modlin
  • Publication number: 20100244867
    Abstract: Based upon a layout of a semiconductor wafer comprising a plurality of integrated circuits at pre-defined locations, each integrated circuit comprising a set of electrical connection pads, a probe chip contactor is established, having a unit standard cell on the probe side of the probe chip to correspond to each of the arranged integrated circuits. The unit standard cell is stepped and repeated for the probe side of the probe chip contactor, to establish a wafer scale standard cell layout. The opposite contact side of the probe chip contactor is connectable to a central structure, e.g. a Z-block or PC board, typically comprising a fixed array of vias with fixed X, Y, and Z locations. The routing of contact side of the probe chip contactor is preferably routed automatically, such as implemented on one or more computers, to provide electrical connections between the substrate through vias and the Z-block through vias.
    Type: Application
    Filed: January 31, 2008
    Publication date: September 30, 2010
    Inventors: Fu Chiung Chong, William R. Bottoms, Ehr-kong Chieh, Nim Cho Lam
  • Patent number: 7772860
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: August 10, 2010
    Assignee: Nanonexus, Inc.
    Inventors: Fu Chiung Chong, Sammy Mok
  • Publication number: 20100066393
    Abstract: An improved interconnection system is described, such as for electrical contactors and connectors, electronic device or module package assemblies, socket assemblies, and/or probe card assembly systems. An exemplary connector comprises a first connector structure comprising a contactor substrate having a contact surface and a bonding surface, and one or more electrically conductive micro-fabricated spring contacts extending from the probe surface, a second connector structure comprising at least one substrate and having a set of at least one electrically conductive contact pad located on a connector surface and corresponding to the set of spring contacts, and means for movably positioning and aligning the first connector structure and the second connector structure between at least a first position and a second position, such that in at least one position, at least one electrically conductive micro-fabricated spring contact is electrically connected to at least one electrically conductive contact pad.
    Type: Application
    Filed: August 24, 2009
    Publication date: March 18, 2010
    Inventors: W. R. Bottoms, Fu Chiung Chong, Sammy Mok, Douglas Modlin
  • Publication number: 20100026331
    Abstract: Enhanced microfabricated spring contact structures and associated methods, e.g. such as for electrical contactors and interposers, comprise improvements to spring structures that extend from the substrate surface, and/or improvements to structures on or within the support substrate. Improved spring structures and processes comprise embodiments having selectively formed and etched, coated and/or plated regions, which are optionally further processed through planarization and/or annealment. Enhanced solder connections and associated processes provide a gap between substrates for componentry, and or improved manufacturing techniques using distributed spacers. Enhanced probe card assembly structures and processes provide improved planarization adjustment and thermal stability.
    Type: Application
    Filed: December 4, 2007
    Publication date: February 4, 2010
    Inventors: Fu Chiung Chong, W.R. Bottoms, Erh-Kong Chieh, Anna Litza, Douglas L. McKay, Roman L. Milter, Sha Li
  • Patent number: 7621761
    Abstract: Several embodiments of stress metal springs are disclosed, which typically comprise a plurality of stress metal layers that are established on a substrate, which are then controllably patterned and partially released from the substrate. An effective rotation angle is typically created in the formed stress metal springs, defining a looped spring structure. The formed springs provide high pitch compliant electrical contacts for a wide variety of interconnection systems, including chip scale semiconductor packages, high density interposer connectors, and probe contactors. Several embodiments of massively parallel interface integrated circuit test assemblies are also disclosed, comprising one or more substrates having stress metal spring contacts, to establish connections between one or more separated integrated circuits on a compliant wafer carrier.
    Type: Grant
    Filed: July 20, 2007
    Date of Patent: November 24, 2009
    Assignee: NanoNexus, Inc.
    Inventors: Sammy Mok, Fu Chiung Chong, Roman Milter
  • Patent number: 7579848
    Abstract: An improved interconnection system is described, such as for electrical contactors and connectors, electronic device or module package assemblies, socket assemblies, and/or probe card assembly systems. An exemplary connector comprises a first connector structure comprising a contactor substrate having a contact surface and a bonding surface, and one or more electrically conductive micro-fabricated spring contacts extending from the probe surface, a second connector structure comprising at least one substrate and having a set of at least one electrically conductive contact pad located on a connector surface and corresponding to the set of spring contacts, and means for movably positioning and aligning the first connector structure and the second connector structure between at least a first position and a second position, such that in at least one position, at least one electrically conductive micro-fabricated spring contact is electrically connected to at least one electrically conductive contact pad.
    Type: Grant
    Filed: February 7, 2006
    Date of Patent: August 25, 2009
    Assignee: Nanonexus, Inc.
    Inventors: Wilmer R. Bottoms, Fu Chiung Chong, Sammy Mok, Douglas Modlin
  • Publication number: 20090153165
    Abstract: An improved interconnection system and method is described, such as for connectors, socket assemblies and/or probe card systems. An exemplary system comprises a probe card interface assembly (PCIA) for establishing electrical connections to a semiconductor wafer mounted in a prober. The PCIA comprises a motherboard parallel to the semiconductor wafer having an upper surface and an opposing lower planar mounting surface, a reference plane defined by a least three points located between the lower surface of the motherboard and the wafer, at least one component located below the motherboard mounting surface, and a mechanism for adjusting the planarity of the reference plane with respect to the wafer. A probe chip having a plurality of spring probes extending there from is mountable and demountable from the PCIA, without the need for further planarity adjustment. The interconnection structures and methods preferably provide improved fabrication cycles.
    Type: Application
    Filed: January 15, 2009
    Publication date: June 18, 2009
    Inventors: Fu Chiung Chong, Andrew Kao, Douglas McKay, Anna Litza, Douglas Modlin, Sammy Mok, Nitin Parekh, Frank John Swiatowiec, Zhaohui Shan
  • Publication number: 20090090617
    Abstract: An enhanced sputtered film processing system and associated method comprises one or more sputter deposition sources each having a sputtering target surface and one or more side shields extending therefrom, to increase the relative collimation of the sputter deposited material, such as about the periphery of the sputtering target surface, toward workpiece substrates. One or more substrates are provided, wherein the substrates have a front surface and an opposing back surface, and may have one or more previously applied layers, such as an adhesion or release layer. The substrates and the deposition targets are controllably moved with respect to each other. The relatively collimated portion of the material sputtered from the sputtering target surface travels beyond the side shields and is deposited on the front surface of the substrates.
    Type: Application
    Filed: July 14, 2006
    Publication date: April 9, 2009
    Inventors: Pierre H. Giauque, Fu Chiung Chong, Frank Swiatowiec, Donald Smith
  • Publication number: 20080297186
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Application
    Filed: July 17, 2008
    Publication date: December 4, 2008
    Inventors: Fu Chiung Chong, Sammy Mok
  • Publication number: 20080246500
    Abstract: An improved interconnection system and method is described, such as for connectors, socket assemblies and/or probe card systems. An exemplary system comprises a probe card interface assembly (PCIA) for establishing electrical connections to a semiconductor wafer mounted in a prober. The PCIA comprises a motherboard parallel to the semiconductor wafer having an upper surface and an opposing lower planar mounting surface, a reference plane defined by a least three points located between the lower surface of the motherboard and the wafer, at least one component located below the motherboard mounting surface, and a mechanism for adjusting the planarity of the reference plane with respect to the wafer. A probe chip having a plurality of spring probes extending there from is mountable and demountable from the PCIA, without the need for further planarity adjustment. The interconnection structures and methods preferably provide improved fabrication cycles.
    Type: Application
    Filed: September 19, 2007
    Publication date: October 9, 2008
    Inventors: Fu Chiung CHONG, Andrew Kao, Douglas McKay, Anna Litza, Douglas Modlin, Sammy Mok, Nitin Parekh, Frank John Swiatowiec, Zhaohui Shan
  • Patent number: 7403029
    Abstract: Several embodiments of massively parallel interface structures are disclosed, which may be used in a wide variety of permanent or temporary applications, such as for interconnecting integrated circuits (ICs) to test and burn-in equipment, for interconnecting modules within electronic devices, for interconnecting computers and other peripheral devices within a network, or for interconnecting other electronic circuitry. Preferred embodiments of the massively parallel interface structures provide massively parallel integrated circuit test assemblies. The massively parallel interface structures preferably use one or more substrates to establish connections between one or more integrated circuits on a semiconductor wafer, and one or more test modules. One or more layers on the intermediate substrates preferably include MEMS and/or thin-film fabricated spring probes.
    Type: Grant
    Filed: November 1, 2006
    Date of Patent: July 22, 2008
    Assignee: Nanonexus Corporation
    Inventors: Fu Chiung Chong, Sammy Mok
  • Patent number: 7382142
    Abstract: An improved interconnection system and method is described, such as for connectors, socket assemblies and/or probe card systems. An exemplary system comprises a probe card interface assembly (PCIA) for establishing electrical connections to a semiconductor wafer mounted in a prober. The PCIA comprises a motherboard parallel to the semiconductor wafer having an upper surface and an opposing lower planar mounting surface, a reference plane defined by a least three points located between the lower surface of the motherboard and the wafer, at least one component located below the motherboard mounting surface, and a mechanism for adjusting the planarity of the reference plane with respect to the wafer. A probe chip having a plurality of spring probes extending there from is mountable and demountable from the PCIA, without the need for further planarity adjustment. The interconnection structures and methods preferably provide improved fabrication cycles.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: June 3, 2008
    Assignee: NanoNexus, Inc.
    Inventors: Fu Chiung Chong, Andrew Kao, Douglas McKay, Anna Litza, Douglas Modlin, Sammy Mok, Nitin Parekh, Frank John Swiatowiec, Zhaohui Shan
  • Patent number: 7349223
    Abstract: Several embodiments of enhanced integrated circuit probe card and package assemblies are disclosed, which extend the mechanical compliance of both MEMS and thin-film fabricated probes, such that these types of spring probe structures can be used to test one or more integrated circuits on a semiconductor wafer. Several embodiments of probe card assemblies, which provide tight signal pad pitch compliance and/or enable high levels of parallel testing in commercial wafer probing equipment, are disclosed. In some preferred embodiments, the probe card assembly structures include separable standard components, which reduce assembly manufacturing cost and manufacturing time. These structures and assemblies enable high speed testing in wafer form. The probes also have built in mechanical protection for both the integrated circuits and the MEMS or thin film fabricated spring tips and probe layout structures on substrates.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: March 25, 2008
    Assignee: Nanonexus, Inc.
    Inventors: Joseph Michael Haemer, Fu Chiung Chong, Douglas N. Modlin