Patents by Inventor Fu-Tang Huang

Fu-Tang Huang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9324585
    Abstract: A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: April 26, 2016
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chiang-Cheng Chang, Meng-Tsung Lee, Jung-Pang Huang, Shih-Kuang Chiu, Fu-Tang Huang
  • Publication number: 20160099204
    Abstract: A package structure is provided, including: a board having a plurality of conductive traces; a plurality of conductive pads formed on the board and each having a height greater than a height of each of the conductive traces; and an electronic component disposed on and electrically connected to the conductive pads via a plurality of conductive elements, wherein at least one of the conductive traces is positioned in proximity of at least one of the conductive pads. Therefore, the conductive elements are prevented from being in contact with the conductive traces, and the problem that the conductive pads and the conductive traces are shorted is solved. The present invention further provides a method for fabricating the packaging substrate.
    Type: Application
    Filed: May 12, 2015
    Publication date: April 7, 2016
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Chia-Cheng Chen, Chih-Jen Yang, Fu-Tang Huang
  • Publication number: 20160020195
    Abstract: A semiconductor package is provided, which includes: a first semiconductor device having a first top surface and a first bottom surface opposite to the first top surface; a plurality of conductive balls formed on the first top surface of the first semiconductor device; a second semiconductor device having a second top surface and a second bottom surface opposite to the second top surface; and a plurality of conductive posts formed on the second bottom surface of the second semiconductor device and correspondingly bonded to the conductive balls for electrically connecting the first semiconductor device and the second semiconductor device, wherein the conductive posts have a height less than 300 um. Therefore, the present invention can easily control the height of the semiconductor package and is applicable to semiconductor packages having fine-pitch conductive balls.
    Type: Application
    Filed: February 6, 2015
    Publication date: January 21, 2016
    Inventors: Cheng-Chia Chiang, Hsin-Ta Lin, Fu-Tang Huang, Yu-Po Wang, Lung-Yuan Wang, Chu-Chi Hsu, Chia-Kai Shih
  • Publication number: 20150332998
    Abstract: A packaging substrate and a package structure are provided. The packaging substrate includes a plurality of dielectric layers, two of which have a difference in thickness; and a plurality of circuit layers alternately stacked with the dielectric layers. Therefore, the package warpage encountered in the prior art is avoided.
    Type: Application
    Filed: December 9, 2014
    Publication date: November 19, 2015
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Ko-Cheng Liu, Fu-Tang Huang
  • Publication number: 20150237717
    Abstract: A package substrate is provided, which includes a plurality of dielectric layers and a plurality of circuit layers alternately stacked with the dielectric layers. At least two of the circuit layers have a difference in thickness so as to prevent warpage of the substrate.
    Type: Application
    Filed: August 7, 2014
    Publication date: August 20, 2015
    Inventors: Chang-fu Lin Chang, Chin-Tsai Yao, Ming-Chin Chuang, Ko-Cheng Liu, Fu-Tang Huang
  • Publication number: 20150235914
    Abstract: A flip-chip packaging substrate is provided, which includes: a substrate body; a plurality of conductive pads formed on a surface of the substrate body; an insulating layer formed on the surface of the substrate body and having a plurality of openings correspondingly exposing a portion of each of the conductive pads; and a metal layer formed on each of the conductive pads in the openings, wherein the metal layer has a top surface having a lowest point lower than a top surface of the insulating layer, and a thickness ratio of the metal layer to the insulating layer is greater than or equal to 1/4 and less than 1, thereby preventing a solder bridge or short circuit from occurring.
    Type: Application
    Filed: July 10, 2014
    Publication date: August 20, 2015
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Po-Hua Chen, Fu-Tang Huang
  • Publication number: 20150069605
    Abstract: A semiconductor device is disclosed, which includes: a substrate having a plurality of connecting pads; a semiconductor component having a plurality of bonding pads formed on a surface thereof and corresponding to the connecting pads and a UBM layer formed on the bonding pads; a plurality of conductive elements each having a first conductive portion and a second conductive portion sequentially formed on the UBM layer, wherein the second conductive portion is less in width than the first conductive portion; and a plurality of solder balls formed between the second conductive portions and the connecting pads for connecting the semiconductor component and the substrate, thereby preventing solder bridging from occurring between the adjacent conductive elements and reducing stresses between the conductive elements and the UBM layer.
    Type: Application
    Filed: May 8, 2014
    Publication date: March 12, 2015
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Hung-Ming Chang, Ming-Chin Chuang, Fu-Tang Huang
  • Publication number: 20150014848
    Abstract: A semiconductor device is disclosed, which includes: a substrate having a substrate body and a plurality of conductive pads formed on the substrate body, wherein each of the conductive pads has at least an opening formed in a first surface thereof; a semiconductor component having a plurality of bonding pads; a plurality of conductive elements formed between the bonding pads and the conductive pads and in the openings of the conductive pads; and an encapsulant formed between the substrate and the semiconductor component for encapsulating the conductive elements, thereby strengthening the bonding between the conductive elements and the conductive pads and consequently increasing the product yield.
    Type: Application
    Filed: April 22, 2014
    Publication date: January 15, 2015
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Fu-Tang Huang
  • Publication number: 20150004752
    Abstract: A semiconductor package is disclosed, which includes: a packaging substrate; a semiconductor element disposed on the packaging substrate in a flip-chip manner; a stopping portion formed at edges of the semiconductor element; an insulating layer formed on an active surface of the semiconductor element and the stopping portion; and an encapsulant formed between the packaging substrate and the insulating layer. The insulating layer has a recessed portion formed on the stopping portion and facing the packaging substrate such that during a reliability test, the recessed portion can prevent delamination occurring between the insulating layer and the stopping portion from extending to the active surface of the semiconductor element.
    Type: Application
    Filed: November 21, 2013
    Publication date: January 1, 2015
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Chang-Fu Lin, Chin-Tsai Yao, Ming-Chin Chuang, Keng-Hung Liu, Fu-Tang Huang
  • Publication number: 20140327131
    Abstract: A package structure is disclosed, which includes a substrate having a body, a plurality of conductive pads formed on the body and a surface passivation layer formed on the body and having a plurality of openings for exposing the conductive pads; a plurality of conductive vias formed in the openings of the surface passivation layer and electrically connected to the conductive pads; a plurality of circuits formed on the surface passivation layer and electrically connected to the conductive vias, wherein the circuits have a plurality of electrical contacts; at least a pattern portion formed on the surface passivation layer and intersecting with the circuits; and a second passivation layer formed on the surface passivation layer, the circuits and the pattern portion and having a plurality of openings for exposing portions of the electrical contacts of the circuits, thereby strengthening the bonding between the circuits and the passivation layers.
    Type: Application
    Filed: August 20, 2013
    Publication date: November 6, 2014
    Applicant: Siliconware Precision Industries Co., Ltd.
    Inventors: Chun-Wei Yeh, Chun-Hsien Shen, Hsiu-Jung Li, Ya-Yi Lai, Fu-Tang Huang
  • Publication number: 20140191376
    Abstract: A semiconductor package is provided, including: a substrate; a first semiconductor element disposed on the substrate and having a first conductive pad grounded to the substrate; a conductive layer formed on the first semiconductor element and electrically connected to the substrate; a second semiconductor element disposed on the first semiconductor element through the conductive layer; and an encapsulant formed on the substrate and encapsulating the first and second semiconductor elements. Therefore, the first and second semiconductor elements are protected from electromagnetic interference (EMI) shielding with the conductive layer being connected to the grounding pad of the substrate. A fabrication method of the semiconductor package is also provided.
    Type: Application
    Filed: April 2, 2013
    Publication date: July 10, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Fu-Tang Huang, Chun-Chi Ke
  • Publication number: 20140183755
    Abstract: A semiconductor package is provided, which includes a carrier having a mounting area and at least a grounding pad; a substrate body having opposite first and second surfaces and a plurality of conductive vias each having a first end exposed from the first surface and a second end opposite to the first end, the substrate body being disposed on the mounting area of the carrier through the second surface thereof; a metal layer formed on the first surface of the substrate body and exposing the first ends of the conductive vias; a conductive body electrically connecting the metal layer and the grounding pad; and a semiconductor element disposed on the substrate body and electrically connected to the first ends of the conductive vias, thereby achieving an EMI shielding effect to prevent interference between electromagnetic waves or electrical signals of the substrate body and the semiconductor element.
    Type: Application
    Filed: April 29, 2013
    Publication date: July 3, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Fu-Tang Huang, Chun-Chi Ke
  • Publication number: 20140021629
    Abstract: A method of fabricating a semiconductor package is provided, including: disposing a plurality of semiconductor elements on a carrier through an adhesive layer in a manner that a portion of the carrier is exposed from the adhesive layer; forming an encapsulant to encapsulate the semiconductor elements; removing the adhesive layer and the carrier to expose the semiconductor elements; and forming a build-up structure on the semiconductor elements. Since the adhesive layer is divided into a plurality of separated portions that will not affect each other due to expansion or contraction when temperature changes, the present invention prevents positional deviations of the semiconductor elements during a molding process, thereby increasing the alignment accuracy.
    Type: Application
    Filed: October 18, 2012
    Publication date: January 23, 2014
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Chiang-Cheng Chang, Meng-Tsung Lee, Jung-Pang Huang, Shih-Kuang Chiu, Fu-Tang Huang
  • Patent number: 8162672
    Abstract: A high power receptacle connector has a first insulating housing, a second insulating housing, a first terminal, a second terminal, a third terminal and a shell. The second insulating housing is mounted on the first insulating housing and has a cylinder. The first terminal is cylindrical, surrounds the cylinder and has multiple first resilient contacting tabs and a reinforcing ring formed on front ends of the first resilient contacting tabs. The second terminal is cylindrical and mounted around the cylinder and has multiple radially protruding second resilient contacting tabs. The second resilient contacting tabs increase the contacting areas, reduce the resistance of the terminals and further improve the power of the high power receptacle connector and stably hold an external plug connector.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: April 24, 2012
    Assignee: Jye Tai Precision Industrial Co., Ltd.
    Inventor: Fu-Tang Huang
  • Publication number: 20120058682
    Abstract: A high power receptacle connector has a first insulating housing, a second insulating housing, a first terminal, a second terminal, a third terminal and a shell. The second insulating housing is mounted on the first insulating housing and has a cylinder. The first terminal is cylindrical, surrounds the cylinder and has multiple first resilient contacting tabs and a reinforcing ring formed on front ends of the first resilient contacting tabs. The second terminal is cylindrical and mounted around the cylinder and has multiple radially protruding second resilient contacting tabs. The second resilient contacting tabs increase the contacting areas, reduce the resistance of the terminals and further improve the power of the high power receptacle connector and stably hold an external plug connector.
    Type: Application
    Filed: January 27, 2011
    Publication date: March 8, 2012
    Applicant: JYE TAI PRECISION INDUSTRIAL CO, LTD.
    Inventor: Fu-Tang HUANG